These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23794649)

  • 1. Opioids and immune modulation: more questions than answers.
    Al-Hashimi M; Scott SW; Thompson JP; Lambert DG
    Br J Anaesth; 2013 Jul; 111(1):80-8. PubMed ID: 23794649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for nociceptin/orphanin FQ (NOP) but not µ (MOP), δ (DOP) or κ (KOP) opioid receptor mRNA in whole human blood.
    Al-Hashimi M; McDonald J; Thompson JP; Lambert DG
    Br J Anaesth; 2016 Mar; 116(3):423-9. PubMed ID: 26865135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control.
    Machelska H; Celik MÖ
    Front Immunol; 2020; 11():300. PubMed ID: 32194554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors.
    Williams JP; Thompson JP; McDonald J; Barnes TA; Cote T; Rowbotham DJ; Lambert DG
    Anesth Analg; 2007 Oct; 105(4):998-1005, table of contents. PubMed ID: 17898379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanism(s) of action.
    Mellon RD; Bayer BM
    J Neuroimmunol; 1998 Mar; 83(1-2):19-28. PubMed ID: 9610669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing κ-, μ-opioid and nociceptin receptors.
    Wang PC; Ho IK; Lee CW
    J Cell Mol Med; 2015 Nov; 19(11):2587-96. PubMed ID: 26153065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-inflammatory effects of opioids.
    Walker JS
    Adv Exp Med Biol; 2003; 521():148-60. PubMed ID: 12617572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot topics in opioid pharmacology: mixed and biased opioids.
    Azzam AAH; McDonald J; Lambert DG
    Br J Anaesth; 2019 Jun; 122(6):e136-e145. PubMed ID: 31010646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine.
    Adzic M; Lukic I; Mitic M; Glavonic E; Dragicevic N; Ivkovic S
    Life Sci; 2023 Aug; 326():121803. PubMed ID: 37245840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of morphine, nicotine and epibatidine on lymphocyte activity and hypothalamic-pituitary-adrenal axis responses.
    Mellon RD; Bayer BM
    J Pharmacol Exp Ther; 1999 Feb; 288(2):635-42. PubMed ID: 9918569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opioid modulation of the fetal hypothalamic-pituitary-adrenal axis: the role of receptor subtypes and route of administration.
    Taylor CC; Wu D; Soong Y; Yee JS; Szeto HH
    J Pharmacol Exp Ther; 1997 Apr; 281(1):129-35. PubMed ID: 9103489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of functional opioid receptors in human dorsal root ganglion neurons.
    Moy JK; Hartung JE; Duque MG; Friedman R; Nagarajan V; Loeza-Alcocer E; Koerber HR; Christoph T; Schröder W; Gold MS
    Pain; 2020 Jul; 161(7):1636-1649. PubMed ID: 32102022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile.
    Dietis N; Guerrini R; Calo G; Salvadori S; Rowbotham DJ; Lambert DG
    Br J Anaesth; 2009 Jul; 103(1):38-49. PubMed ID: 19474215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothalamic-pituitary-adrenal axis hypersensitivity to naloxone in opioid dependence: a case of naloxone-induced withdrawal.
    Culpepper-Morgan JA; Kreek MJ
    Metabolism; 1997 Feb; 46(2):130-4. PubMed ID: 9030816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis.
    Lambert DG
    BJA Open; 2023 Jun; 6():100141. PubMed ID: 37588171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kappa opiate agonists modulate the hypothalamic-pituitary-adrenocortical axis in the rat.
    Iyengar S; Kim HS; Wood PL
    J Pharmacol Exp Ther; 1986 Aug; 238(2):429-36. PubMed ID: 3016237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist.
    Linz K; Christoph T; Tzschentke TM; Koch T; Schiene K; Gautrois M; Schröder W; Kögel BY; Beier H; Englberger W; Schunk S; De Vry J; Jahnel U; Frosch S
    J Pharmacol Exp Ther; 2014 Jun; 349(3):535-48. PubMed ID: 24713140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atypical opioid receptors: unconventional biology and therapeutic opportunities.
    Palmer CB; Meyrath M; Canals M; Kostenis E; Chevigné A; Szpakowska M
    Pharmacol Ther; 2022 May; 233():108014. PubMed ID: 34624426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid receptor subtypes: fact or artifact?
    Dietis N; Rowbotham DJ; Lambert DG
    Br J Anaesth; 2011 Jul; 107(1):8-18. PubMed ID: 21613279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amygdalar vasopressin mRNA increases in acute cocaine withdrawal: evidence for opioid receptor modulation.
    Zhou Y; Bendor JT; Yuferov V; Schlussman SD; Ho A; Kreek MJ
    Neuroscience; 2005; 134(4):1391-7. PubMed ID: 16039786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.