BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23794960)

  • 1. Standard binding free energies from computer simulations: What is the best strategy?
    Gumbart JC; Roux B; Chipot C
    J Chem Theory Comput; 2013 Jan; 9(1):794-802. PubMed ID: 23794960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving Accurate Standard Protein-Protein Binding Free Energy Calculations through the Geometrical Route and Ergodic Sampling.
    Fu H; Chipot C; Shao X; Cai W
    J Chem Inf Model; 2023 Apr; 63(8):2512-2519. PubMed ID: 37042771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rigorous Framework for Calculating Protein-Protein Binding Affinities in Membranes.
    Blazhynska M; Gumbart JC; Chen H; Tajkhorshid E; Roux B; Chipot C
    J Chem Theory Comput; 2023 Dec; 19(24):9077-9092. PubMed ID: 38091976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C.
    Moutoussamy EE; Khan HM; Roberts MF; Gershenson A; Chipot C; Reuter N
    J Chem Inf Model; 2022 Dec; 62(24):6602-6613. PubMed ID: 35343689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient determination of protein-protein standard binding free energies from first principles.
    Gumbart JC; Roux B; Chipot C
    J Chem Theory Comput; 2013 Aug; 9(8):. PubMed ID: 24179453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Coarse Variables for the Accurate Determination of Standard Binding Free Energies.
    Fu H; Cai W; Hénin J; Roux B; Chipot C
    J Chem Theory Comput; 2017 Nov; 13(11):5173-5178. PubMed ID: 28965398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hazardous Shortcuts in Standard Binding Free Energy Calculations.
    Blazhynska M; Goulard Coderc de Lacam E; Chen H; Roux B; Chipot C
    J Phys Chem Lett; 2022 Jul; 13(27):6250-6258. PubMed ID: 35771686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized Potential of Mean Force Calculations for Standard Binding Free Energies.
    Buch I; Sadiq SK; De Fabritiis G
    J Chem Theory Comput; 2011 Jun; 7(6):1765-72. PubMed ID: 26596439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computations of standard binding free energies with molecular dynamics simulations.
    Deng Y; Roux B
    J Phys Chem B; 2009 Feb; 113(8):2234-46. PubMed ID: 19146384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Speed and Affordability without Compromising Accuracy: Standard Binding Free-Energy Calculations Using an Enhanced Sampling Algorithm, Multiple-Time Stepping, and Hydrogen Mass Repartitioning.
    Blazhynska M; Goulard Coderc de Lacam E; Chen H; Chipot C
    J Chem Theory Comput; 2023 Jun; 19(11):3091-3101. PubMed ID: 37196198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of HDAC8-ligands' intermolecular forces through molecular dynamics simulations: profiling of non-bonding energies to design potential compounds as new anti-cancer agents.
    Dewaker V; Srivastava AK; Arora A; Prabhakar YS
    J Biomol Struct Dyn; 2021 Aug; 39(13):4726-4751. PubMed ID: 32578494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate PDZ/Peptide Binding Specificity with Additive and Polarizable Free Energy Simulations.
    Panel N; Villa F; Fuentes EJ; Simonson T
    Biophys J; 2018 Mar; 114(5):1091-1102. PubMed ID: 29539396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands.
    Deng N; Cui D; Zhang BW; Xia J; Cruz J; Levy R
    Phys Chem Chem Phys; 2018 Jun; 20(25):17081-17092. PubMed ID: 29896599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient calculation of relative binding free energies by umbrella sampling perturbation.
    Zeller F; Zacharias M
    J Comput Chem; 2014 Dec; 35(31):2256-62. PubMed ID: 25266275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative energies of binding for antibody-carbohydrate-antigen complexes computed from free-energy simulations.
    Pathiaseril A; Woods RJ
    J Am Chem Soc; 2000 Jan; 122(2):331-8. PubMed ID: 17211491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the binding energies of testosterone, 5alpha-dihydrotestosterone, androstenedione and dehydroepiandrosterone sulfate with an antitestosterone antibody.
    Nordman N; Valjakka J; Peräkylä M
    Proteins; 2003 Jan; 50(1):135-43. PubMed ID: 12471606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taming Rugged Free Energy Landscapes Using an Average Force.
    Fu H; Shao X; Cai W; Chipot C
    Acc Chem Res; 2019 Nov; 52(11):3254-3264. PubMed ID: 31680510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge.
    Song LF; Bansal N; Zheng Z; Merz KM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1013-1026. PubMed ID: 30143917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.