These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23795289)

  • 1. Evolutionary principles of modular gene regulation in yeasts.
    Thompson DA; Roy S; Chan M; Styczynsky MP; Pfiffner J; French C; Socha A; Thielke A; Napolitano S; Muller P; Kellis M; Konieczka JH; Wapinski I; Regev A
    Elife; 2013 Jun; 2():e00603. PubMed ID: 23795289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From elements to modules: regulatory evolution in Ascomycota fungi.
    Wohlbach DJ; Thompson DA; Gasch AP; Regev A
    Curr Opin Genet Dev; 2009 Dec; 19(6):571-8. PubMed ID: 19879128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction and Analysis of the Evolution of Modular Transcriptional Regulatory Programs Using Arboretum.
    Knaack SA; Thompson DA; Roy S
    Methods Mol Biol; 2016; 1361():375-89. PubMed ID: 26483033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene duplication and the evolution of ribosomal protein gene regulation in yeast.
    Wapinski I; Pfiffner J; French C; Socha A; Thompson DA; Regev A
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5505-10. PubMed ID: 20212107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast rises to the occasion.
    Ragan MA
    Elife; 2013 Jun; 2():e00933. PubMed ID: 23795300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural history and evolutionary principles of gene duplication in fungi.
    Wapinski I; Pfeffer A; Friedman N; Regev A
    Nature; 2007 Sep; 449(7158):54-61. PubMed ID: 17805289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species.
    Fares MA; Byrne KP; Wolfe KH
    Mol Biol Evol; 2006 Feb; 23(2):245-53. PubMed ID: 16207937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules.
    Roy S; Wapinski I; Pfiffner J; French C; Socha A; Konieczka J; Habib N; Kellis M; Thompson D; Regev A
    Genome Res; 2013 Jun; 23(6):1039-50. PubMed ID: 23640720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased rates of protein evolution and asymmetric deceleration after the whole-genome duplication in yeasts.
    Ascencio D; Ochoa S; Delaye L; DeLuna A
    BMC Evol Biol; 2017 Feb; 17(1):40. PubMed ID: 28166720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization.
    Tsankov A; Yanagisawa Y; Rhind N; Regev A; Rando OJ
    Genome Res; 2011 Nov; 21(11):1851-62. PubMed ID: 21914852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal regulatory evolution: cis and trans in the balance.
    Thompson DA; Regev A
    FEBS Lett; 2009 Dec; 583(24):3959-65. PubMed ID: 19914250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of nucleosome positioning in the evolution of gene regulation.
    Tsankov AM; Thompson DA; Socha A; Regev A; Rando OJ
    PLoS Biol; 2010 Jul; 8(7):e1000414. PubMed ID: 20625544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene order evolution and paleopolyploidy in hemiascomycete yeasts.
    Wong S; Butler G; Wolfe KH
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9272-7. PubMed ID: 12093907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone modification pattern evolution after yeast gene duplication.
    Zou Y; Su Z; Huang W; Gu X
    BMC Evol Biol; 2012 Jul; 12():111. PubMed ID: 22776110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The drug:H⁺ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H⁺ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts.
    Dias PJ; Sá-Correia I
    BMC Genomics; 2013 Dec; 14():901. PubMed ID: 24345006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast.
    Tanay A; Regev A; Shamir R
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7203-8. PubMed ID: 15883364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identity and divergence of protein domain architectures after the yeast whole-genome duplication event.
    Grassi L; Fusco D; Sellerio A; Corà D; Bassetti B; Caselle M; Lagomarsino MC
    Mol Biosyst; 2010 Nov; 6(11):2305-15. PubMed ID: 20820472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterochronic evolution reveals modular timing changes in budding yeast transcriptomes.
    Simola DF; Francis C; Sniegowski PD; Kim J
    Genome Biol; 2010; 11(10):R105. PubMed ID: 20969771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences.
    Nguyen Ba AN; Strome B; Hua JJ; Desmond J; Gagnon-Arsenault I; Weiss EL; Landry CR; Moses AM
    PLoS Comput Biol; 2014 Dec; 10(12):e1003977. PubMed ID: 25474245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.