These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23795599)

  • 1. Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4.
    Gu M; Wang Z; Connell JG; Perea DE; Lauhon LJ; Gao F; Wang C
    ACS Nano; 2013 Jul; 7(7):6303-9. PubMed ID: 23795599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the Crystalline Li
    Bärmann P; Krueger B; Casino S; Winter M; Placke T; Wittstock G
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55903-55912. PubMed ID: 33259711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic lithiation behavior of crystalline silicon.
    Wagesreither S; Lugstein A; Bertagnolli E
    Nanotechnology; 2012 Dec; 23(49):495716. PubMed ID: 23165459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ atomic-scale imaging of electrochemical lithiation in silicon.
    Liu XH; Wang JW; Huang S; Fan F; Huang X; Liu Y; Krylyuk S; Yoo J; Dayeh SA; Davydov AV; Mao SX; Picraux ST; Zhang S; Li J; Zhu T; Huang JY
    Nat Nanotechnol; 2012 Nov; 7(11):749-56. PubMed ID: 23042490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.
    Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C
    Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials.
    Nie A; Gan LY; Cheng Y; Asayesh-Ardakani H; Li Q; Dong C; Tao R; Mashayek F; Wang HT; Schwingenschlögl U; Klie RF; Yassar RS
    ACS Nano; 2013 Jul; 7(7):6203-11. PubMed ID: 23730945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
    Wang Z; Gu M; Zhou Y; Zu X; Connell JG; Xiao J; Perea D; Lauhon LJ; Bang J; Zhang S; Wang C; Gao F
    Nano Lett; 2013 Sep; 13(9):4511-6. PubMed ID: 23944904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
    Pharr M; Zhao K; Wang X; Suo Z; Vlassak JJ
    Nano Lett; 2012 Sep; 12(9):5039-47. PubMed ID: 22889293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium silicide nanocrystals: synthesis, chemical stability, thermal stability, and carbon encapsulation.
    Cloud JE; Wang Y; Li X; Yoder TS; Yang Y; Yang Y
    Inorg Chem; 2014 Oct; 53(20):11289-97. PubMed ID: 25265365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2.
    Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW
    ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy.
    McDowell MT; Ryu I; Lee SW; Wang C; Nix WD; Cui Y
    Adv Mater; 2012 Nov; 24(45):6034-41. PubMed ID: 22945804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.