BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2379574)

  • 21. Differential role of vasoactive prostanoids in porcine and human isolated pulmonary arteries in response to endothelium-dependent relaxants.
    Lawrence RN; Clelland C; Beggs D; Salama FD; Dunn WR; Wilson VG
    Br J Pharmacol; 1998 Nov; 125(6):1128-37. PubMed ID: 9863638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EDHF mediates the relaxation of stretched canine femoral arteries to acetylcholine.
    Woodley N; Meunier RL; Barclay JK
    Can J Physiol Pharmacol; 2001 Nov; 79(11):924-31. PubMed ID: 11760094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of oxidative metabolism on endothelium-dependent vascular relaxation of isolated vessels.
    Cappelli-Bigazzi M; Battaglia C; Pannain S; Chiariello M; Ambrosio G
    J Mol Cell Cardiol; 1997 Mar; 29(3):871-9. PubMed ID: 9152848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds.
    Clark SG; Fuchs LC
    J Pharmacol Exp Ther; 1997 Sep; 282(3):1473-9. PubMed ID: 9316861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Propranolol enhances acetylcholine-induced relaxation in the various arterial segments of rabbit.
    Ercan ZS; Türker RK
    Arch Int Pharmacodyn Ther; 1988; 294():815-93. PubMed ID: 3266070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for endothelium-derived relaxing factor/nitric oxide in equine digital arteries.
    Cogswell AM; Johnson PJ; Adams HR
    Am J Vet Res; 1995 Dec; 56(12):1637-41. PubMed ID: 8599526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-hour exposure to University of Wisconsin solution does not impair endothelium-dependent relaxation or damage vascular smooth muscle of epicardial coronary arteries.
    Ekin ST; Pearson PJ; Evora PR; Schaff HV
    J Heart Lung Transplant; 1993; 12(4):624-33. PubMed ID: 8369325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation.
    Malmsjö M; Edvinsson L; Erlinge D
    Br J Pharmacol; 1998 Feb; 123(4):719-29. PubMed ID: 9517392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms.
    Molin JC; Bendhack LM
    Vascul Pharmacol; 2004 Aug; 42(1):1-6. PubMed ID: 15664881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of endothelial NO in the dilator effect of VIP on rat isolated pulmonary artery.
    Anaid Shahbazian ; Petkov V; Baykuscheva-Gentscheva T; Hoeger H; Painsipp E; Holzer P; Mosgoeller W
    Regul Pept; 2007 Mar; 139(1-3):102-8. PubMed ID: 17174416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Propofol attenuates acetylcholine-induced pulmonary vasorelaxation: role of nitric oxide and endothelium-derived hyperpolarizing factors.
    Horibe M; Ogawa K; Sohn JT; Murray PA
    Anesthesiology; 2000 Aug; 93(2):447-55. PubMed ID: 10910495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saphenous vein endothelium-dependent relaxation in patients with peripheral vascular disease.
    Schwartz LB; Radic ZS; O'Donohoe MK; Mikat EM; McCann RL; Hagen PO
    Ann Vasc Surg; 1992 Sep; 6(5):425-32. PubMed ID: 1467181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EPR spectroscopic studies of detection of a carbon-centered free radical during acetylcholine-induced and endothelium-dependent relaxation of guinea pig pulmonary artery.
    Sata T; Kubota E; Said SI; Misra HP
    Free Radic Res Commun; 1990; 9(3-6):213-22. PubMed ID: 2167259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-frequency ultrasonic waves cause endothelial dysfunction on canine epicardial coronary arteries.
    Discigil B; King RM; Pearson PJ; Capellini VK; Rodrigues AJ; Schaff HV; Evora PR
    Rev Bras Cir Cardiovasc; 2008; 23(2):190-6. PubMed ID: 18820781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery.
    Rodman DM; Yamaguchi T; Hasunuma K; O'Brien RF; McMurtry IF
    Am J Physiol; 1990 Apr; 258(4 Pt 1):L207-14. PubMed ID: 2159226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries.
    Johnson LR; Rush JW; Turk JR; Price EM; Laughlin MH
    J Appl Physiol (1985); 2001 Mar; 90(3):1102-10. PubMed ID: 11181626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endothelium-dependent hyperpolarization of smooth muscle cells in rabbit femoral arteries is not mediated by EDRF (nitric oxide).
    Huang AH; Busse R; Bassenge E
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Oct; 338(4):438-42. PubMed ID: 3266657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of endothelium-dependent vasodilation by Escherichia coli endotoxemia.
    Parker JL; Myers PR; Zhong Q; Kim K; Adams HR
    Shock; 1994 Dec; 2(6):451-8. PubMed ID: 7538038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro pulmonary vasorelaxant effect of the phosphodiesterase inhibitor enoximone.
    Butt AY; Dinh-Xuan AT; Pepke-Zaba J; Cremona G; Clelland CA; Higenbottam TW
    Angiology; 1993 Apr; 44(4):289-94. PubMed ID: 8457079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.