BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23795775)

  • 41. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose.
    Lama S; Seol E; Park S
    Bioresour Technol; 2017 Dec; 245(Pt B):1542-1550. PubMed ID: 28549809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect.
    Lu XY; Ren SL; Lu JZ; Zong H; Song J; Zhuge B
    J Appl Microbiol; 2018 Mar; 124(3):682-690. PubMed ID: 29297957
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering.
    Wischral D; Zhang J; Cheng C; Lin M; De Souza LMG; Pessoa FLP; Pereira N; Yang ST
    Bioresour Technol; 2016 Jul; 212():100-110. PubMed ID: 27085150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xylan supplement improves 1,3-propanediol fermentation by Clostridium butyricum.
    Apiwatanapiwat W; Vaithanomsat P; Thanapase W; Ratanakhanokchai K; Kosugi A
    J Biosci Bioeng; 2018 Jun; 125(6):662-668. PubMed ID: 29534944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations.
    Wang Y; Teng H; Xiu Z
    J Ind Microbiol Biotechnol; 2011 Jun; 38(6):705-15. PubMed ID: 20811802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol.
    Yang B; Liang S; Liu H; Liu J; Cui Z; Wen J
    Bioresour Technol; 2018 Nov; 267():599-607. PubMed ID: 30056370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol.
    Zhou M; Chen J; Freguia S; Rabaey K; Keller J
    Environ Sci Technol; 2013 Oct; 47(19):11199-205. PubMed ID: 23947779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of 1,3-propanediol by Lactobacillus diolivorans from agro-industrial residues and cactus cladode acid hydrolyzate.
    de Santana JS; da Silva JL; Dutra ED; Menezes RSC; de Souza RB; Pinheiro IO
    Appl Biochem Biotechnol; 2021 May; 193(5):1585-1601. PubMed ID: 33507495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-level co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Metabolic engineering and process optimization.
    Zhang Y; Yun J; Zabed HM; Dou Y; Zhang G; Zhao M; Taherzadeh MJ; Ragauskas A; Qi X
    Bioresour Technol; 2023 Feb; 369():128438. PubMed ID: 36470488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring Dual-Substrate Cultivation Strategy of 1,3-Propanediol Production Using Klebsiella pneumoniae.
    Chen WC; Chuang CJ; Chang JS; Wang LF; Soo PC; Wu HS; Tsai SL; Wei YH
    Appl Biochem Biotechnol; 2020 May; 191(1):346-359. PubMed ID: 31863348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of dhaT mutation of K. pneumoniae on 1,3-propanediol fermentation.
    Xu YZ; Wu RC; Zheng ZM; Liu DH
    World J Microbiol Biotechnol; 2011 Jun; 27(6):1491-7. PubMed ID: 25187148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction and characterization of a 1,3-propanediol operon.
    Skraly FA; Lytle BL; Cameron DC
    Appl Environ Microbiol; 1998 Jan; 64(1):98-105. PubMed ID: 9435066
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out.
    Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M
    Microb Cell Fact; 2014 May; 13():70. PubMed ID: 24885849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium.
    Dietz D; Zeng AP
    Bioprocess Biosyst Eng; 2014 Feb; 37(2):225-33. PubMed ID: 23749235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    AMB Express; 2013 Jan; 3(1):10. PubMed ID: 23369580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. budC knockout in Klebsiella pneumoniae for bioconversion from glycerol to 1,3-propanediol.
    Guo X; Fang H; Zhuge B; Zong H; Song J; Zhuge J; Du X
    Biotechnol Appl Biochem; 2013; 60(6):557-63. PubMed ID: 23586646
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.
    Khanna S; Goyal A; Moholkar VS
    Prep Biochem Biotechnol; 2013; 43(8):828-47. PubMed ID: 23876141
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B.
    Durgapal M; Kumar V; Yang TH; Lee HJ; Seung D; Park S
    Bioresour Technol; 2014 May; 159():223-31. PubMed ID: 24657752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.
    Hirokawa Y; Maki Y; Hanai T
    Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of crude-cell-extract glycerol dehydratase activity in recombinant Escherichia coli using coupled-enzyme reactions.
    Sankaranarayanan M; Seol E; Kim Y; Chauhan AS; Park S
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):477-488. PubMed ID: 28093656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.