These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23796078)
1. A biomechanical evaluation of three drop wire configurations. Arango J; Lewis DD; Hudson CC; Horodyski M Vet Surg; 2013 Aug; 42(6):669-77. PubMed ID: 23796078 [TBL] [Abstract][Full Text] [Related]
2. Mechanics of Supplemental Drop Wire and Half-Pin Fixation Elements in Single Ring Circular External Fixator Constructs. Lewis RA; Lewis DD; Anderson CL; Hudson CC; Coggeshall JD; Iorgulescu AD; Banks SA Vet Surg; 2016 May; 45(4):471-9. PubMed ID: 27009685 [TBL] [Abstract][Full Text] [Related]
3. A biomechanical comparison of three hybrid linear-circular external fixator constructs. Hudson CC; Lewis DD; Cross AR; Dunbar NJ; Horodyski M; Banks SA; Pozzi A Vet Surg; 2012 Nov; 41(8):954-65. PubMed ID: 22957475 [TBL] [Abstract][Full Text] [Related]
4. Axial stiffness and ring deformation of complete and incomplete single ring circular external skeletal fixator constructs. Hudson CC; Lewis DD; Cross AR; Horodyski M; Banks SA; Pozzi A Am J Vet Res; 2012 Dec; 73(12):2021-8. PubMed ID: 23176434 [TBL] [Abstract][Full Text] [Related]
5. Effect of various distal ring-block configurations on the biomechanical properties of circular external skeletal fixators for use in dogs and cats. Cross AR; Lewis DD; Rigaud S; Rapoff AJ Am J Vet Res; 2004 Apr; 65(4):393-8. PubMed ID: 15077678 [TBL] [Abstract][Full Text] [Related]
6. Axial characteristics of circular external skeletal fixator single ring constructs. Lewis DD; Bronson DG; Cross AR; Welch RD; Kubilis PS Vet Surg; 2001; 30(4):386-94. PubMed ID: 11443601 [TBL] [Abstract][Full Text] [Related]
7. Comparison of alternate and simultaneous tensioning of wires in a single-ring fixator construct. Ryan S; Ehrhart N; Zuehlsdorff K; James S Vet Surg; 2009 Jan; 38(1):96-103. PubMed ID: 19152623 [TBL] [Abstract][Full Text] [Related]
8. The use of a circular external skeletal fixation device for the management of long bone osteotomies in large ruminants: an experimental study. Aithal HP; Singh GR; Hoque M; Maiti SK; Kinjavdekar P; Pawde AM; Setia HC; J Vet Med A Physiol Pathol Clin Med; 2004 Aug; 51(6):284-93. PubMed ID: 15485564 [TBL] [Abstract][Full Text] [Related]
9. Effects of ring diameter and wire tension on the axial biomechanics of four-ring circular external skeletal fixator constructs. Cross AR; Lewis DD; Murphy ST; Rigaud S; Madison JB; Kehoe MM; Rapoff AJ Am J Vet Res; 2001 Jul; 62(7):1025-30. PubMed ID: 11453475 [TBL] [Abstract][Full Text] [Related]
10. Validation of a finite element model of the Kirschner-Ehmer external skeletal fixation system. Cross AR; Aron DN; Budsberg SC; Foutz TL; Pearman BT; Evans MD Am J Vet Res; 1999 May; 60(5):615-20. PubMed ID: 10328433 [TBL] [Abstract][Full Text] [Related]
11. Transfixion wire positioning within the bone: an option to control proximal tibia external fixation stiffness. Antoci V; Raney EM; Antoci V; Voor MJ; Roberts CS J Pediatr Orthop; 2006; 26(4):466-70. PubMed ID: 16791063 [TBL] [Abstract][Full Text] [Related]
12. The effect of transfixion wire crossing angle on the stiffness of fine wire external fixation: a biomechanical study. Roberts CS; Antoci V; Antoci V; Voor MJ Injury; 2005 Sep; 36(9):1107-12. PubMed ID: 16098336 [TBL] [Abstract][Full Text] [Related]
13. Mechanical effect of posterior wire or half-pin configuration on stabilization utilizing a model of circular external fixation of the foot. Rocchio TM; Younes MB; Bronson DG; Birch JG; Samchukov ML Foot Ankle Int; 2004 Mar; 25(3):136-43. PubMed ID: 15006334 [TBL] [Abstract][Full Text] [Related]
14. The effect of wire plane tilt and olive wires on proximal tibia fracture fragment stability and fracture site motion. Voor MJ; Antoci V; Antoci V; Roberts CS J Biomech; 2005 Mar; 38(3):537-41. PubMed ID: 15652552 [TBL] [Abstract][Full Text] [Related]
15. What Are the Biomechanical Effects of Half-pin and Fine-wire Configurations on Fracture Site Movement in Circular Frames? Henderson DJ; Rushbrook JL; Stewart TD; Harwood PJ Clin Orthop Relat Res; 2016 Apr; 474(4):1041-9. PubMed ID: 26642789 [TBL] [Abstract][Full Text] [Related]
16. Mechanical evaluation of transosseous wire rope configurations in a large animal external fixator. Rapoff AJ; Markel MD; Vanderby R Am J Vet Res; 1995 May; 56(5):694-9. PubMed ID: 7661467 [TBL] [Abstract][Full Text] [Related]
17. In vitro biomechanical testing of different configurations of acrylic external skeletal fixator constructs. Tyagi SK; Aithal HP; Kinjavdekar P; Amarpal ; Pawde AM; Srivastava T; Singh J; Madhu DN Vet Comp Orthop Traumatol; 2015; 28(4):227-33. PubMed ID: 25998130 [TBL] [Abstract][Full Text] [Related]
19. In vitro biomechanical testing of a micro external skeletal fixator. Deiss R; Bali MS; Doherr M; Spreng D; Rytz U; Ferguson SJ Vet Comp Orthop Traumatol; 2013; 26(5):385-91. PubMed ID: 23708943 [TBL] [Abstract][Full Text] [Related]
20. The effect of transfixion wire number and spacing between two levels of fixation on the stiffness of proximal tibial external fixation. Antoci V; Roberts CS; Antoci V; Voor MJ J Orthop Trauma; 2005 Mar; 19(3):180-6. PubMed ID: 15758671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]