BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 23796463)

  • 1. Adaptation and learning of molecular networks as a description of cancer development at the systems-level: potential use in anti-cancer therapies.
    Gyurkó DM; Veres DV; Módos D; Lenti K; Korcsmáros T; Csermely P
    Semin Cancer Biol; 2013 Aug; 23(4):262-9. PubMed ID: 23796463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer-related networks: a help to understand, predict and change malignant transformation.
    Csermely P; Korcsmáros T
    Semin Cancer Biol; 2013 Aug; 23(4):209-12. PubMed ID: 23831276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential Mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence.
    Csermely P; Hódsági J; Korcsmáros T; Módos D; Perez-Lopez ÁR; Szalay K; Veres DV; Lenti K; Wu LY; Zhang XS
    Semin Cancer Biol; 2015 Feb; 30():42-51. PubMed ID: 24412105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex regulation of autophagy in cancer - integrated approaches to discover the networks that hold a double-edged sword.
    Kubisch J; Türei D; Földvári-Nagy L; Dunai ZA; Zsákai L; Varga M; Vellai T; Csermely P; Korcsmáros T
    Semin Cancer Biol; 2013 Aug; 23(4):252-61. PubMed ID: 23810837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.
    Ornostay A; Cowie AM; Hindle M; Baker CJ; Martyniuk CJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):263-74. PubMed ID: 24013142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways.
    Janda E; Lehmann K; Killisch I; Jechlinger M; Herzig M; Downward J; Beug H; Grünert S
    J Cell Biol; 2002 Jan; 156(2):299-313. PubMed ID: 11790801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling galectin-1 as a novel therapeutic target for cancer.
    Astorgues-Xerri L; Riveiro ME; Tijeras-Raballand A; Serova M; Neuzillet C; Albert S; Raymond E; Faivre S
    Cancer Treat Rev; 2014 Mar; 40(2):307-19. PubMed ID: 23953240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway.
    Gollob JA; Wilhelm S; Carter C; Kelley SL
    Semin Oncol; 2006 Aug; 33(4):392-406. PubMed ID: 16890795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain cancer stem-like cell genesis from p53-deficient mouse astrocytes by oncogenic Ras.
    Lee JS; Gil JE; Kim JH; Kim TK; Jin X; Oh SY; Sohn YW; Jeon HM; Park HJ; Park JW; Shin YJ; Chung YG; Lee JB; You S; Kim H
    Biochem Biophys Res Commun; 2008 Jan; 365(3):496-502. PubMed ID: 18021740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis.
    Marquardt S; Solanki M; Spitschak A; Vera J; Pützer BM
    Semin Cancer Biol; 2018 Dec; 53():90-109. PubMed ID: 29966677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic functional duality of cancer genes.
    Stepanenko AA; Vassetzky YS; Kavsan VM
    Gene; 2013 Oct; 529(2):199-207. PubMed ID: 23933273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms promoting physiological cells progression into tumorigenesis.
    Korbut E; Ptak-Belowska A; Brzozowski T
    J Physiol Pharmacol; 2012 Dec; 63(6):565-70. PubMed ID: 23388471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer.
    Shrimali D; Shanmugam MK; Kumar AP; Zhang J; Tan BK; Ahn KS; Sethi G
    Cancer Lett; 2013 Dec; 341(2):139-49. PubMed ID: 23962559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of signal transduction: epidermal growth factor receptor family, vascular endothelial growth factor family, Kit, platelet-derived growth factor receptor, Ras.
    Erman M
    J BUON; 2007 Sep; 12 Suppl 1():S83-94. PubMed ID: 17935283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells.
    Espinoza I; Miele L
    Cancer Lett; 2013 Nov; 341(1):41-5. PubMed ID: 23973264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenesis recapitulates embryogenesis via the hypoxia pathway: morphoproteomics and biomedical analytics provide proof of concept and therapeutic options.
    Brown RE; McGuire MF
    Ann Clin Lab Sci; 2012; 42(3):243-57. PubMed ID: 22964612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers.
    Sabbah M; Emami S; Redeuilh G; Julien S; Prévost G; Zimber A; Ouelaa R; Bracke M; De Wever O; Gespach C
    Drug Resist Updat; 2008; 11(4-5):123-51. PubMed ID: 18718806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.
    Martínez-Pacheco M; Hidalgo-Miranda A; Romero-Córdoba S; Valverde M; Rojas E
    Gene; 2014 Jan; 533(2):508-14. PubMed ID: 24080485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy management - a critical role in cancer induction?
    Garland J
    Crit Rev Oncol Hematol; 2013 Oct; 88(1):198-217. PubMed ID: 23731619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.