These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2379740)

  • 1. Interactions of cholesterol/cholesteryl esters with dimyristoylphosphatidylcholine bilayers.
    Husain R; Beswick PH; Higinbotham J
    Biochem Soc Trans; 1990 Apr; 18(2):325. PubMed ID: 2379740
    [No Abstract]   [Full Text] [Related]  

  • 2. Lecithin:cholesterol acyltransferase regulation. Effect of fluidity of dimyristoylphosphatidylcholine vesicles.
    Ellerbe P; Murphy RB; Rose HG
    Biochim Biophys Acta; 1985 Jul; 817(2):282-8. PubMed ID: 4016106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers.
    Widomska J; Kostecka-Gugała A; Latowski D; Gruszecki WI; Strzałka K
    Biophys Chem; 2009 Mar; 140(1-3):108-14. PubMed ID: 19126445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microemulsions of cholesteryl oleate and dimyristoylphosphatidylcholine: a model for cholesteryl ester rich very low density lipoproteins.
    Mims MP; Guyton JR; Morrisett JD
    Biochemistry; 1986 Jan; 25(2):474-83. PubMed ID: 3456798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid domains in fluid membranes: a quick-freeze differential scanning calorimetry study.
    Melchior DL
    Science; 1986 Dec; 234(4783):1577-80. PubMed ID: 3787264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting?
    Furlan AL; Saad A; Dufourc EJ; Géan J
    Biochimie; 2016 Nov; 130():41-48. PubMed ID: 27402289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid exchange and transfer between biological lipid-protein structures.
    Bell FP
    Prog Lipid Res; 1978; 17(2):207-43. PubMed ID: 390541
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of N-methylation of phosphatidylethanolamine on the fluidity of phospholipid bilayers.
    Mio M; Okamoto M; Akagi M; Tasaka K
    Biochem Biophys Res Commun; 1984 May; 120(3):989-95. PubMed ID: 6732794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol-induced fluidization of brain lipid bilayers: required presence of cholesterol in membranes for the expression of tolerance.
    Johnson DA; Lee NM; Cooke R; Loh HH
    Mol Pharmacol; 1979 May; 15(3):739-46. PubMed ID: 492153
    [No Abstract]   [Full Text] [Related]  

  • 11. Back to the future: mechanics and thermodynamics of lipid biomembranes.
    Evans E; Rawicz W; Smith BA
    Faraday Discuss; 2013; 161():591-611. PubMed ID: 23805759
    [No Abstract]   [Full Text] [Related]  

  • 12. Motion and surface accessibility of spin-labeled lipids in a model lipoprotein containing cholesteryl oleate, dimyristoylphosphatidylcholine, and apolipoprotein E.
    Mims MP; Chari MV; Morrisett JD
    Biochemistry; 1986 Nov; 25(23):7494-501. PubMed ID: 3026456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential scanning calorimetric study of the interaction of cholesterol with the major lipids of the Acholeplasma laidlawii B membrane.
    McMullen TP; Wong BC; Tham EL; Lewis RN; McElhaney RN
    Biochemistry; 1996 Dec; 35(51):16789-98. PubMed ID: 8988017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The modulation of thermal properties of vinblastine by cholesterol in membrane bilayers.
    Kyrikou I; Daliani I; Mavromoustakos T; Maswadeh H; Demetzos C; Hatziantoniou S; Giatrellis S; Nounesis G
    Biochim Biophys Acta; 2004 Feb; 1661(1):1-8. PubMed ID: 14967469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partition of malathion in synthetic and native membranes.
    Antunes-Madeira MC; Madeira VM
    Biochim Biophys Acta; 1987 Jul; 901(1):61-6. PubMed ID: 3593726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control and role of pH in peptide-lipid interactions in oriented membrane samples.
    Misiewicz J; Afonin S; Ulrich AS
    Biochim Biophys Acta; 2015 Mar; 1848(3):833-41. PubMed ID: 25511586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesteryl hemisuccinate-cholesterol interaction: miscibility properties of the sterols.
    Bach D; Borochov N; Wachtel EJ; Shinitzky M
    Chem Phys Lipids; 1995 May; 76(1):123-7. PubMed ID: 7788795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation induces shifts in the lateral distribution of cholesterol from ordered towards less ordered domains.
    Halling KK; Ramstedt B; Slotte JP
    Biochim Biophys Acta; 2008 Apr; 1778(4):1100-11. PubMed ID: 18230327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The action of membranotropic compounds with various structures on the parameters of the phase transition of dimyristoylphosphatidylcholine].
    Sëmin BK; Bautina AL; Ivanov II
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1989; (5):32-6. PubMed ID: 2765595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effects of cholesterol and cholesterol sulfate on hydration and ordering of dimyristoylphosphatidylcholine membranes.
    Faure C; Tranchant JF; Dufourc EJ
    Biophys J; 1996 Mar; 70(3):1380-90. PubMed ID: 8785293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.