These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23797790)

  • 1. Discrete epidemic models with arbitrary stage distributions and applications to disease control.
    Hernandez-Ceron N; Feng Z; Castillo-Chavez C
    Bull Math Biol; 2013 Oct; 75(10):1716-46. PubMed ID: 23797790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of assumptions on generation time distributions in epidemic models.
    Svensson Å
    Math Biosci; 2015 Dec; 270(Pt A):81-9. PubMed ID: 26477379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global dynamics of SIR model with switched transmission rate.
    Chladná Z; Kopfová J; Rachinskii D; Rouf SC
    J Math Biol; 2020 Mar; 80(4):1209-1233. PubMed ID: 31900507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete stochastic metapopulation model with arbitrarily distributed infectious period.
    Hernandez-Ceron N; Chavez-Casillas JA; Feng Z
    Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global stability properties of a class of renewal epidemic models.
    Meehan MT; Cocks DG; Müller J; McBryde ES
    J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Edge-Based Model of SEIR Epidemics on Static Random Networks.
    Alota CP; Pilar-Arceo CPC; de Los Reyes V AA
    Bull Math Biol; 2020 Jul; 82(7):96. PubMed ID: 32676740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak.
    Saldaña F; Flores-Arguedas H; Camacho-Gutiérrez JA; Barradas I
    Math Biosci Eng; 2020 Jun; 17(4):4165-4183. PubMed ID: 32987574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Note on Observation Processes in Epidemic Models.
    Park SW; Bolker BM
    Bull Math Biol; 2020 Mar; 82(3):37. PubMed ID: 32146583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness.
    Yan P; Feng Z
    Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A state dependent pulse control strategy for a SIRS epidemic system.
    Nie LF; Teng ZD; Guo BZ
    Bull Math Biol; 2013 Oct; 75(10):1697-715. PubMed ID: 23812914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
    van den Driessche P; Yakubu AA
    Bull Math Biol; 2019 Nov; 81(11):4412-4446. PubMed ID: 29651670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model for disease dynamics of a waterborne pathogen on a random network.
    Li M; Ma J; van den Driessche P
    J Math Biol; 2015 Oct; 71(4):961-77. PubMed ID: 25326654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic progression on networks based on disease generation time.
    Davoudi B; Moser F; Brauer F; Pourbohloul B
    J Biol Dyn; 2013; 7(1):148-60. PubMed ID: 23889499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the within-household infection rate in emerging SIR epidemics among a community of households.
    Ball F; Shaw L
    J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of an ultra-discrete SIR epidemic model with time delay.
    Sekiguchi M; Ishiwata E; Nakata Y
    Math Biosci Eng; 2018 Jun; 15(3):653-666. PubMed ID: 30380324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluations of Interventions Using Mathematical Models with Exponential and Non-exponential Distributions for Disease Stages: The Case of Ebola.
    Wang X; Shi Y; Feng Z; Cui J
    Bull Math Biol; 2017 Sep; 79(9):2149-2173. PubMed ID: 28721471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population.
    Kassa SM; Ouhinou A
    J Math Biol; 2015 Jan; 70(1-2):213-36. PubMed ID: 24526258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Multi-stage Infections on Networks.
    Sherborne N; Blyuss KB; Kiss IZ
    Bull Math Biol; 2015 Oct; 77(10):1909-33. PubMed ID: 26403422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.