BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 23797826)

  • 1. Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition.
    Zhou Y; Nie W; Zhao J; Yuan X
    J Mater Sci Mater Med; 2013 Oct; 24(10):2277-86. PubMed ID: 23797826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapidly in situ forming chitosan/ε-polylysine hydrogels for adhesive sealants and hemostatic materials.
    Nie W; Yuan X; Zhao J; Zhou Y; Bao H
    Carbohydr Polym; 2013 Jul; 96(1):342-8. PubMed ID: 23688490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels.
    Darling NJ; Hung YS; Sharma S; Segura T
    Biomaterials; 2016 Sep; 101():199-206. PubMed ID: 27289380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks.
    Jansen LE; Negrón-Piñeiro LJ; Galarza S; Peyton SR
    Acta Biomater; 2018 Apr; 70():120-128. PubMed ID: 29452274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate.
    Kim MS; Choi YJ; Noh I; Tae G
    J Biomed Mater Res A; 2007 Dec; 83(3):674-82. PubMed ID: 17530630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z; Karkhaneh A; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.
    Fu Y; Kao WJ
    J Biomed Mater Res A; 2011 Aug; 98(2):201-11. PubMed ID: 21548071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moldable Tissue-Sealant Hydrogels Composed of
    Mitsuhashi K; Inagaki NF; Ito T
    ACS Biomater Sci Eng; 2024 May; 10(5):3343-3354. PubMed ID: 38695560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture.
    Kim M; Ahn Y; Lee K; Jung W; Cha C
    Carbohydr Polym; 2020 Feb; 229():115538. PubMed ID: 31826503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications.
    Yu J; Xu X; Yao F; Luo Z; Jin L; Xie B; Shi S; Ma H; Li X; Chen H
    Int J Pharm; 2014 Aug; 470(1-2):151-7. PubMed ID: 24768405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable PAMAM/ODex double-crosslinked hydrogels with high mechanical strength.
    Li S; Wang J; Song L; Zhou Y; Zhao J; Hou X; Yuan X
    Biomed Mater; 2016 Dec; 12(1):015012. PubMed ID: 27934783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of heparin-containing hydrogels for modulating cell responses.
    Nie T; Akins RE; Kiick KL
    Acta Biomater; 2009 Mar; 5(3):865-75. PubMed ID: 19167277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry.
    van Dijk M; van Nostrum CF; Hennink WE; Rijkers DT; Liskamp RM
    Biomacromolecules; 2010 Jun; 11(6):1608-14. PubMed ID: 20496905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility.
    Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z
    J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan.
    Zeng Z; Mo X
    J Biomater Appl; 2017 Nov; 32(5):612-621. PubMed ID: 29113567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition.
    Hiemstra C; Aa LJ; Zhong Z; Dijkstra PJ; Feijen J
    Biomacromolecules; 2007 May; 8(5):1548-56. PubMed ID: 17425366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels.
    Yang J; Jacobsen MT; Pan H; Kopecek J
    Macromol Biosci; 2010 Apr; 10(4):445-54. PubMed ID: 20146210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.