These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 23797826)
1. Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition. Zhou Y; Nie W; Zhao J; Yuan X J Mater Sci Mater Med; 2013 Oct; 24(10):2277-86. PubMed ID: 23797826 [TBL] [Abstract][Full Text] [Related]
2. Rapidly in situ forming chitosan/ε-polylysine hydrogels for adhesive sealants and hemostatic materials. Nie W; Yuan X; Zhao J; Zhou Y; Bao H Carbohydr Polym; 2013 Jul; 96(1):342-8. PubMed ID: 23688490 [TBL] [Abstract][Full Text] [Related]
3. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740 [TBL] [Abstract][Full Text] [Related]
4. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Darling NJ; Hung YS; Sharma S; Segura T Biomaterials; 2016 Sep; 101():199-206. PubMed ID: 27289380 [TBL] [Abstract][Full Text] [Related]
5. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks. Jansen LE; Negrón-Piñeiro LJ; Galarza S; Peyton SR Acta Biomater; 2018 Apr; 70():120-128. PubMed ID: 29452274 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. Kim MS; Choi YJ; Noh I; Tae G J Biomed Mater Res A; 2007 Dec; 83(3):674-82. PubMed ID: 17530630 [TBL] [Abstract][Full Text] [Related]
7. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
8. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. Fu Y; Kao WJ J Biomed Mater Res A; 2011 Aug; 98(2):201-11. PubMed ID: 21548071 [TBL] [Abstract][Full Text] [Related]
9. Moldable Tissue-Sealant Hydrogels Composed of Mitsuhashi K; Inagaki NF; Ito T ACS Biomater Sci Eng; 2024 May; 10(5):3343-3354. PubMed ID: 38695560 [TBL] [Abstract][Full Text] [Related]
10. In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture. Kim M; Ahn Y; Lee K; Jung W; Cha C Carbohydr Polym; 2020 Feb; 229():115538. PubMed ID: 31826503 [TBL] [Abstract][Full Text] [Related]
12. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Yu J; Xu X; Yao F; Luo Z; Jin L; Xie B; Shi S; Ma H; Li X; Chen H Int J Pharm; 2014 Aug; 470(1-2):151-7. PubMed ID: 24768405 [TBL] [Abstract][Full Text] [Related]
13. Injectable PAMAM/ODex double-crosslinked hydrogels with high mechanical strength. Li S; Wang J; Song L; Zhou Y; Zhao J; Hou X; Yuan X Biomed Mater; 2016 Dec; 12(1):015012. PubMed ID: 27934783 [TBL] [Abstract][Full Text] [Related]
14. Production of heparin-containing hydrogels for modulating cell responses. Nie T; Akins RE; Kiick KL Acta Biomater; 2009 Mar; 5(3):865-75. PubMed ID: 19167277 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation. Cao Y; Lee BH; Peled HB; Venkatraman SS J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry. van Dijk M; van Nostrum CF; Hennink WE; Rijkers DT; Liskamp RM Biomacromolecules; 2010 Jun; 11(6):1608-14. PubMed ID: 20496905 [TBL] [Abstract][Full Text] [Related]
17. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044 [TBL] [Abstract][Full Text] [Related]
18. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan. Zeng Z; Mo X J Biomater Appl; 2017 Nov; 32(5):612-621. PubMed ID: 29113567 [TBL] [Abstract][Full Text] [Related]
19. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Hiemstra C; Aa LJ; Zhong Z; Dijkstra PJ; Feijen J Biomacromolecules; 2007 May; 8(5):1548-56. PubMed ID: 17425366 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels. Yang J; Jacobsen MT; Pan H; Kopecek J Macromol Biosci; 2010 Apr; 10(4):445-54. PubMed ID: 20146210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]