These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 23798004)
1. Electrical measurement of red blood cell deformability on a microfluidic device. Zheng Y; Nguyen J; Wang C; Sun Y Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004 [TBL] [Abstract][Full Text] [Related]
2. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Shevkoplyas SS; Yoshida T; Gifford SC; Bitensky MW Lab Chip; 2006 Jul; 6(7):914-20. PubMed ID: 16804596 [TBL] [Abstract][Full Text] [Related]
3. High-throughput biophysical measurement of human red blood cells. Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells. Kwan JM; Guo Q; Kyluik-Price DL; Ma H; Scott MD Am J Hematol; 2013 Aug; 88(8):682-9. PubMed ID: 23674388 [TBL] [Abstract][Full Text] [Related]
5. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations. Kang YJ; Ha YR; Lee SJ Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556 [TBL] [Abstract][Full Text] [Related]
6. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Lee SS; Yim Y; Ahn KH; Lee SJ Biomed Microdevices; 2009 Oct; 11(5):1021-7. PubMed ID: 19434498 [TBL] [Abstract][Full Text] [Related]
8. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels. Tatsumi K; Katsumoto Y; Fujiwara R; Nakabe K Sensors (Basel); 2012; 12(8):10566-83. PubMed ID: 23112616 [TBL] [Abstract][Full Text] [Related]
9. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device. Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236 [TBL] [Abstract][Full Text] [Related]
10. Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability. Sakuma S; Kuroda K; Tsai CH; Fukui W; Arai F; Kaneko M Lab Chip; 2014 Mar; 14(6):1135-41. PubMed ID: 24463842 [TBL] [Abstract][Full Text] [Related]
11. Characterization of red blood cell deformability change during blood storage. Zheng Y; Chen J; Cui T; Shehata N; Wang C; Sun Y Lab Chip; 2014 Feb; 14(3):577-83. PubMed ID: 24296983 [TBL] [Abstract][Full Text] [Related]
12. Validation and application of an automated rheoscope for measuring red blood cell deformability distributions in different species. Dobbe JG; Hardeman MR; Streekstra GJ; Grimbergen CA Biorheology; 2004; 41(2):65-77. PubMed ID: 15090677 [TBL] [Abstract][Full Text] [Related]
13. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow. Rodrigues RO; Pinho D; Faustino V; Lima R Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154 [TBL] [Abstract][Full Text] [Related]
14. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels. Korin N; Bransky A; Dinnar U J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis. Ji QQ; Du GS; van Uden MJ; Fang Q; den Toonder JM Talanta; 2013 Jul; 111():178-82. PubMed ID: 23622542 [TBL] [Abstract][Full Text] [Related]
16. Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability. Shin S; Hou JX; Suh JS; Singh M Clin Hemorheol Microcirc; 2007; 37(4):319-28. PubMed ID: 17942984 [TBL] [Abstract][Full Text] [Related]
17. Red blood cell rheology using single controlled laser-induced cavitation bubbles. Quinto-Su PA; Kuss C; Preiser PR; Ohl CD Lab Chip; 2011 Feb; 11(4):672-8. PubMed ID: 21183972 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Guo Q; Reiling SJ; Rohrbach P; Ma H Lab Chip; 2012 Mar; 12(6):1143-50. PubMed ID: 22318405 [TBL] [Abstract][Full Text] [Related]
19. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
20. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel. Shin S; Park MS; Ku YH; Suh JS Clin Hemorheol Microcirc; 2006; 34(1-2):353-61. PubMed ID: 16543657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]