BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23798365)

  • 1. Sub-10 nm Graphene Nanoribbon Array field-effect transistors fabricated by block copolymer lithography.
    Son JG; Son M; Moon KJ; Lee BH; Myoung JM; Strano MS; Ham MH; Ross CA
    Adv Mater; 2013 Sep; 25(34):4723-8. PubMed ID: 23798365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Aligned Multichannel Graphene Nanoribbon Transistor Arrays Fabricated at Wafer Scale.
    Jeong SJ; Jo S; Lee J; Yang K; Lee H; Lee CS; Park H; Park S
    Nano Lett; 2016 Sep; 16(9):5378-85. PubMed ID: 27532894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons.
    Liang X; Wi S
    ACS Nano; 2012 Nov; 6(11):9700-10. PubMed ID: 23078122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors.
    Kang SH; Hwang WS; Lin Z; Kwon SH; Hong SW
    Nano Lett; 2015 Dec; 15(12):7913-20. PubMed ID: 26569342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene.
    Solís-Fernández P; Yoshida K; Ogawa Y; Tsuji M; Ago H
    Adv Mater; 2013 Dec; 25(45):6562-8. PubMed ID: 24030892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A path to ultranarrow patterns using self-assembled lithography.
    Jung YS; Chang JB; Verploegen E; Berggren KK; Ross CA
    Nano Lett; 2010 Mar; 10(3):1000-5. PubMed ID: 20146429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography.
    Zhao C; Xu X; Bae SH; Yang Q; Liu W; Belling JN; Cheung KM; Rim YS; Yang Y; Andrews AM; Weiss PS
    Nano Lett; 2018 Sep; 18(9):5590-5595. PubMed ID: 30060654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of fully flattened carbon nanotubes: a new graphene nanoribbon analogue.
    Choi DH; Wang Q; Azuma Y; Majima Y; Warner JH; Miyata Y; Shinohara H; Kitaura R
    Sci Rep; 2013; 3():1617. PubMed ID: 23563618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature plasma etching of high aspect-ratio densely packed 15 to sub-10 nm silicon features derived from PS-PDMS block copolymer patterns.
    Liu Z; Gu X; Hwu J; Sassolini S; Olynick DL
    Nanotechnology; 2014 Jul; 25(28):285301. PubMed ID: 24971641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography.
    Liu G; Wu Y; Lin YM; Farmer DB; Ott JA; Bruley J; Grill A; Avouris P; Pfeiffer D; Balandin AA; Dimitrakopoulos C
    ACS Nano; 2012 Aug; 6(8):6786-92. PubMed ID: 22780305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.
    Yang L; Zhao Y; Xu W; Shi E; Wei W; Li X; Cao A; Cao Y; Fang Y
    Nano Lett; 2017 Jan; 17(1):71-77. PubMed ID: 27958757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity.
    Zhao C; Liu Q; Cheung KM; Liu W; Yang Q; Xu X; Man T; Weiss PS; Zhou C; Andrews AM
    ACS Nano; 2021 Jan; 15(1):904-915. PubMed ID: 33337135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors.
    Jeon S; Han P; Jeong J; Hwang WS; Hong SW
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography.
    Liang X; Jung YS; Wu S; Ismach A; Olynick DL; Cabrini S; Bokor J
    Nano Lett; 2010 Jul; 10(7):2454-60. PubMed ID: 20540552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graphene nanoribbon memory cell.
    Stützel EU; Burghard M; Kern K; Traversi F; Nichele F; Sordan R
    Small; 2010 Dec; 6(24):2822-5. PubMed ID: 20949540
    [No Abstract]   [Full Text] [Related]  

  • 16. Pulsed transfer etching of PS-PDMS block copolymers self-assembled in 193 nm lithography stacks.
    Girardot C; Böhme S; Archambault S; Salaün M; Latu-Romain E; Cunge G; Joubert O; Zelsmann M
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16276-82. PubMed ID: 25111901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable transport gap in narrow bilayer graphene nanoribbons.
    Yu WJ; Duan X
    Sci Rep; 2013; 3():1248. PubMed ID: 23409239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene nanomesh.
    Bai J; Zhong X; Jiang S; Huang Y; Duan X
    Nat Nanotechnol; 2010 Mar; 5(3):190-4. PubMed ID: 20154685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars.
    Kato T; Hatakeyama R
    Nat Nanotechnol; 2012 Oct; 7(10):651-6. PubMed ID: 22961304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.