These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 23798650)
1. PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro. Lessim S; Migonney V; Thoreux P; Lutomski D; Changotade S Biomed Mater Eng; 2013; 23(4):289-97. PubMed ID: 23798650 [TBL] [Abstract][Full Text] [Related]
2. The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on in vitro mineralisation and in vivo bone tissue integration. Vaquette C; Viateau V; Guérard S; Anagnostou F; Manassero M; Castner DG; Migonney V Biomaterials; 2013 Sep; 34(29):7048-63. PubMed ID: 23790438 [TBL] [Abstract][Full Text] [Related]
3. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering. Sarukawa J; Takahashi M; Abe M; Suzuki D; Tokura S; Furuike T; Tamura H J Biomater Sci Polym Ed; 2011; 22(4-6):717-32. PubMed ID: 20566054 [TBL] [Abstract][Full Text] [Related]
4. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering. Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649 [TBL] [Abstract][Full Text] [Related]
5. Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Nöth U; Schupp K; Heymer A; Kall S; Jakob F; Schütze N; Baumann B; Barthel T; Eulert J; Hendrich C Cytotherapy; 2005; 7(5):447-55. PubMed ID: 16236634 [TBL] [Abstract][Full Text] [Related]
6. Migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. Murray MM; Martin SD; Spector M J Orthop Res; 2000 Jul; 18(4):557-64. PubMed ID: 11052491 [TBL] [Abstract][Full Text] [Related]
7. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. Seo YK; Yoon HH; Song KY; Kwon SY; Lee HS; Park YS; Park JK J Orthop Res; 2009 Apr; 27(4):495-503. PubMed ID: 18924141 [TBL] [Abstract][Full Text] [Related]
8. Silk enhances the ligamentization of the polyethylene terephthalate artificial ligament in a canine anterior cruciate ligament reconstruction model. Zhi Y; Jiang J; Zhang P; Chen S Artif Organs; 2019 Jun; 43(6):E94-E108. PubMed ID: 30412273 [TBL] [Abstract][Full Text] [Related]
9. Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis. Zhou J; Ciobanu M; Pavon-Djavid G; Gueguen V; Migonney V Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5115-8. PubMed ID: 18003157 [TBL] [Abstract][Full Text] [Related]
10. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs. Hahner J; Hoyer M; Hillig S; Schulze-Tanzil G; Meyer M; Schröpfer M; Lohan A; Garbe LA; Heinrich G; Breier A J Biomater Sci Polym Ed; 2015; 26(16):1085-99. PubMed ID: 26300365 [TBL] [Abstract][Full Text] [Related]
11. In vivo and in vitro cellular ingrowth into a new generation of artificial ligaments. Trieb K; Blahovec H; Brand G; Sabeti M; Dominkus M; Kotz R Eur Surg Res; 2004; 36(3):148-51. PubMed ID: 15178903 [TBL] [Abstract][Full Text] [Related]
12. ACL reconstruction using a novel hybrid scaffold composed of polyarylate fibers and collagen fibers. Tovar N; Murthy NS; Kohn J; Gatt C; Dunn M J Biomed Mater Res A; 2012 Nov; 100(11):2913-20. PubMed ID: 22696232 [TBL] [Abstract][Full Text] [Related]
13. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754 [TBL] [Abstract][Full Text] [Related]
14. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857 [TBL] [Abstract][Full Text] [Related]
15. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. Hayami JW; Surrao DC; Waldman SD; Amsden BG J Biomed Mater Res A; 2010 Mar; 92(4):1407-20. PubMed ID: 19353565 [TBL] [Abstract][Full Text] [Related]
16. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Liu H; Fan H; Toh SL; Goh JC Biomaterials; 2008 Apr; 29(10):1443-53. PubMed ID: 18155134 [TBL] [Abstract][Full Text] [Related]
18. Bioreactor and scaffold design for the mechanical stimulation of anterior cruciate ligament grafts. Hohlrieder M; Teuschl AH; Cicha K; van Griensven M; Redl H; Stampfl J Biomed Mater Eng; 2013; 23(3):225-37. PubMed ID: 23629535 [TBL] [Abstract][Full Text] [Related]
19. Biologic interaction of three-dimensional periodontal fibroblast spheroids with collagen-based and synthetic membranes. Berahim Z; Moharamzadeh K; Rawlinson A; Jowett AK J Periodontol; 2011 May; 82(5):790-7. PubMed ID: 21080786 [TBL] [Abstract][Full Text] [Related]
20. Analysis of early cellular responses of anterior cruciate ligament fibroblasts seeded on different molecular weight polycaprolactone films functionalized by a bioactive poly(sodium styrene sulfonate) polymer. Leroux A; Venkatesan JK; Castner DG; Cucchiarini M; Migonney V Biointerphases; 2019 Aug; 14(4):041004. PubMed ID: 31405286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]