These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 2379871)

  • 1. Alternative pathways for hydrogen disposal during fermentation in the human colon.
    Gibson GR; Cummings JH; Macfarlane GT; Allison C; Segal I; Vorster HH; Walker AR
    Gut; 1990 Jun; 31(6):679-83. PubMed ID: 2379871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut.
    Gibson GR; Macfarlane GT; Cummings JH
    J Appl Bacteriol; 1988 Aug; 65(2):103-11. PubMed ID: 3204069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dietary sulphate in the regulation of methanogenesis in the human large intestine.
    Christl SU; Gibson GR; Cummings JH
    Gut; 1992 Sep; 33(9):1234-8. PubMed ID: 1427377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanogens outcompete sulphate reducing bacteria for H2 in the human colon.
    Strocchi A; Furne J; Ellis C; Levitt MD
    Gut; 1994 Aug; 35(8):1098-101. PubMed ID: 7926913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production, metabolism, and excretion of hydrogen in the large intestine.
    Christl SU; Murgatroyd PR; Gibson GR; Cummings JH
    Gastroenterology; 1992 Apr; 102(4 Pt 1):1269-77. PubMed ID: 1551534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria.
    Strocchi A; Furne JK; Ellis CJ; Levitt MD
    Gut; 1991 Dec; 32(12):1498-501. PubMed ID: 1773956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora.
    De Graeve KG; Grivet JP; Durand M; Beaumatin P; Cordelet C; Hannequart G; Demeyer D
    J Appl Bacteriol; 1994 Jan; 76(1):55-61. PubMed ID: 8144406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial equol production attenuates colonic methanogenesis and sulphidogenesis in vitro.
    Bolca S; Verstraete W
    Anaerobe; 2010 Jun; 16(3):247-52. PubMed ID: 20298796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine.
    Gibson GR; Cummings JH; Macfarlane GT
    J Appl Bacteriol; 1988 Sep; 65(3):241-7. PubMed ID: 2852666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):93-7. PubMed ID: 678015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hydrogen metabolism in the large intestine--physiology and clinical implications].
    Christl SU; Scheppach W; Kasper H
    Z Gastroenterol; 1995 Jul; 33(7):408-13. PubMed ID: 7571760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting hydrogen production and consumption by human fecal flora. The critical roles of hydrogen tension and methanogenesis.
    Strocchi A; Levitt MD
    J Clin Invest; 1992 Apr; 89(4):1304-11. PubMed ID: 1556190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans.
    Bernalier A; Rochet V; Leclerc M; Doré J; Pochart P
    Curr Microbiol; 1996 Aug; 33(2):94-9. PubMed ID: 8662179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O; Hink L; Horn MA; Drake HL
    ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible role for bile acid in the control of methanogenesis and the accumulation of hydrogen gas in the human colon.
    Florin TH; Jabbar IA
    J Gastroenterol Hepatol; 1994; 9(2):112-7. PubMed ID: 8003641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constancy of glucose and starch fermentations by two different human faecal microbial communities.
    Weaver GA; Krause JA; Miller TL; Wolin MJ
    Gut; 1989 Jan; 30(1):19-25. PubMed ID: 2920921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrate on methane production and fermentation by slurries of human faecal bacteria.
    Allison C; Macfarlane GT
    J Gen Microbiol; 1988 Jun; 134(6):1397-405. PubMed ID: 3221192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen and methane production from household solid waste in the two-stage fermentation process.
    Liu D; Liu D; Zeng RJ; Angelidaki I
    Water Res; 2006 Jun; 40(11):2230-6. PubMed ID: 16725172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):89-92. PubMed ID: 678014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.