These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 23799064)
21. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. Liu S; Wang S; Wu S; Wu Y; Yang Y PLoS One; 2020; 15(1):e0228159. PubMed ID: 32004347 [TBL] [Abstract][Full Text] [Related]
22. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Denolf P; Hendrickx K; Van Damme J; Jansens S; Peferoen M; Degheele D; Van Rie J Eur J Biochem; 1997 Sep; 248(3):748-61. PubMed ID: 9342226 [TBL] [Abstract][Full Text] [Related]
23. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494 [TBL] [Abstract][Full Text] [Related]
24. Toxicity and Cross-Resistance of Insecticides to Cry2Ab-Resistant and Cry2Ab-Susceptible Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae). Bird LJ; Downes SJ J Econ Entomol; 2014 Oct; 107(5):1923-30. PubMed ID: 26309283 [TBL] [Abstract][Full Text] [Related]
26. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. Wei W; Pan S; Ma Y; Xiao Y; Yang Y; He S; Bravo A; Soberón M; Liu K Insect Biochem Mol Biol; 2020 Mar; 118():103306. PubMed ID: 31843687 [TBL] [Abstract][Full Text] [Related]
27. Up-regulated death-associated LIM-only protein contributes to fitness costs of Bacillus thuringiensis Cry1Ac resistance in Helicoverpa armigera. Guo H; Lu G; Su X; Liang G; Liu C; Cheng H J Insect Physiol; 2014 Jan; 60():145-52. PubMed ID: 24326206 [TBL] [Abstract][Full Text] [Related]
28. Esterase isozymes of Apis mellifera: substrate and inhibition characteristics, developmental ontogeny, and electrophoretic variability. Bitondi MM; Mestriner MA Biochem Genet; 1983 Oct; 21(9-10):985-1002. PubMed ID: 6661179 [TBL] [Abstract][Full Text] [Related]
29. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
30. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
31. Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). Zhang C; Wei J; Naing ZL; Soe ET; Liang G Pestic Biochem Physiol; 2021 Jun; 175():104837. PubMed ID: 33993962 [TBL] [Abstract][Full Text] [Related]
32. Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera. Li Y; Liu J; Lu M; Ma Z; Cai C; Wang Y; Zhang X Int J Mol Sci; 2016 Apr; 17(4):493. PubMed ID: 27049381 [TBL] [Abstract][Full Text] [Related]
33. Disruption of a cadherin gene associated with resistance to Cry1Ac {delta}-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Xu X; Yu L; Wu Y Appl Environ Microbiol; 2005 Feb; 71(2):948-54. PubMed ID: 15691952 [TBL] [Abstract][Full Text] [Related]
34. Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. Jakubowska AK; Caccia S; Gordon KH; Ferré J; Herrero S J Virol; 2010 Mar; 84(5):2547-55. PubMed ID: 20032185 [TBL] [Abstract][Full Text] [Related]
35. Bacillus thuringiensis Cry1Ab Domain III β-16 Is Involved in Binding to Prohibitin, Which Correlates with Toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Sena da Silva IH; Gómez I; Pacheco S; Sánchez J; Zhang J; Luque Castellane TC; Aparecida Desiderio J; Soberón M; Bravo A; Polanczyk RA Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127814 [No Abstract] [Full Text] [Related]
36. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity. Zhang H; Yu S; Shi Y; Yang Y; Fabrick JA; Wu Y Insect Biochem Mol Biol; 2017 Jul; 86():41-49. PubMed ID: 28576655 [TBL] [Abstract][Full Text] [Related]
37. Isolation of alpha cluster esterase genes associated with organophosphate resistance in Lucilia cuprina. Newcomb RD; East PD; Russell RJ; Oakeshott JG Insect Mol Biol; 1996 Aug; 5(3):211-6. PubMed ID: 8799740 [TBL] [Abstract][Full Text] [Related]
38. Involvement of nonbinding site proteinases in the development of resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry1Ac. Cao G; Zhang L; Liang G; Li X; Wu K J Econ Entomol; 2013 Dec; 106(6):2514-21. PubMed ID: 24498753 [TBL] [Abstract][Full Text] [Related]
39. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. Liu C; Wu K; Wu Y; Gao Y; Ning C; Oppert B J Insect Physiol; 2009 Aug; 55(8):686-93. PubMed ID: 19446559 [TBL] [Abstract][Full Text] [Related]
40. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. Zhang M; Wei J; Ni X; Zhang J; Jurat-Fuentes JL; Fabrick JA; Carrière Y; Tabashnik BE; Li X Pest Manag Sci; 2019 Apr; 75(4):1099-1106. PubMed ID: 30264537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]