These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23799093)

  • 1. In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants.
    Sabri F; Sebelik ME; Meacham R; Boughter JD; Challis MJ; Leventis N
    PLoS One; 2013; 8(6):e66348. PubMed ID: 23799093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological evaluation of the biocompatibility of polyurea crosslinked silica aerogel implants in a rat model: a pilot study.
    Sabri F; Boughter JD; Gerth D; Skalli O; Phung TC; Tamula GR; Leventis N
    PLoS One; 2012; 7(12):e50686. PubMed ID: 23251378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells.
    Yin W; Venkitachalam SM; Jarrett E; Staggs S; Leventis N; Lu H; Rubenstein DA
    J Biomed Mater Res A; 2010 Mar; 92(4):1431-9. PubMed ID: 19358258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of surface topography and stiffness on adhesion and neurites extension of PC12 cells on crosslinked silica aerogel substrates.
    Lynch KJ; Skalli O; Sabri F
    PLoS One; 2017; 12(10):e0185978. PubMed ID: 29049304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel technique for repair of severed peripheral nerves in rats using polyurea crosslinked silica aerogel scaffold.
    Sabri F; Gerth D; Tamula GR; Phung TC; Lynch KJ; Boughter JD
    J Invest Surg; 2014 Oct; 27(5):294-303. PubMed ID: 24833437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study.
    Sabri F; Cole JA; Scarbrough MC; Leventis N
    PLoS One; 2012; 7(3):e33242. PubMed ID: 22448239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica Aerogel Monoliths Derived from Silica Hydrosol with Various Surfactants.
    Chen D; Wang X; Ding W; Zou W; Zhu Q; Shen J
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration.
    Liu S; Zhou C; Mou S; Li J; Zhou M; Zeng Y; Luo C; Sun J; Wang Z; Xu W
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110137. PubMed ID: 31546424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring mechanical properties of aerogels for aerospace applications.
    Randall JP; Meador MA; Jana SC
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):613-26. PubMed ID: 21361281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurea Aerogels: Synthesis, Material Properties, and Applications.
    Leventis N
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels.
    Boday DJ; Stover RJ; Muriithi B; Keller MW; Wertz JT; Defriend Obrey KA; Loy DA
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1364-9. PubMed ID: 20355935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aesthetically Enhanced Silica Aerogel Via Incorporation of Laser Etching and Dyes.
    Stanec AM; Hajjaj Z; Carroll MK; Anderson AM
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite.
    Zhang H; Zhang C; Ji W; Wang X; Li Y; Tao W
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of drug release from silica-gelatin aerogel-Relationship between matrix structure and release kinetics.
    Veres P; Kéri M; Bányai I; Lázár I; Fábián I; Domingo C; Kalmár J
    Colloids Surf B Biointerfaces; 2017 Apr; 152():229-237. PubMed ID: 28113125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density effects of silica aerogel insulation on the performance of a graphite probe calorimeter.
    Bancheri J; Seuntjens J; Sarfehnia A; Renaud J
    Med Phys; 2019 Apr; 46(4):1874-1882. PubMed ID: 30729543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoindentation of Graphene-Reinforced Silica Aerogel: A Molecular Dynamics Study.
    Patil SP
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30987400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for pH-responsive controlled drug release.
    Vazhayal L; Talasila S; Abdul Azeez PM; Solaiappan A
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15564-74. PubMed ID: 25130541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.