BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23799399)

  • 1. Single-molecule force spectroscopy of G-protein-coupled receptors.
    Zocher M; Bippes CA; Zhang C; Müller DJ
    Chem Soc Rev; 2013 Oct; 42(19):7801-15. PubMed ID: 23799399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the rhodopsin-like G protein-coupled receptors by atomic force microscopy.
    Fang B; Zhao L; Du X; Liu Q; Yang H; Li F; Sheng Y; Zhao W; Zhong H
    Cytoskeleton (Hoboken); 2021 Aug; 78(8):400-416. PubMed ID: 35066996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins.
    Zocher M; Roos C; Wegmann S; Bosshart PD; Dötsch V; Bernhard F; Müller DJ
    ACS Nano; 2012 Jan; 6(1):961-71. PubMed ID: 22196235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors.
    Fotiadis D; Jastrzebska B; Philippsen A; Müller DJ; Palczewski K; Engel A
    Curr Opin Struct Biol; 2006 Apr; 16(2):252-9. PubMed ID: 16567090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane cholesterol in the function and organization of G-protein coupled receptors.
    Paila YD; Chattopadhyay A
    Subcell Biochem; 2010; 51():439-66. PubMed ID: 20213554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins.
    Janovjak H; Sapra KT; Kedrov A; Müller DJ
    Chemphyschem; 2008 May; 9(7):954-66. PubMed ID: 18348129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist.
    Spoerri PM; Kato HE; Pfreundschuh M; Mari SA; Serdiuk T; Thoma J; Sapra KT; Zhang C; Kobilka BK; Müller DJ
    Structure; 2018 Jun; 26(6):829-838.e4. PubMed ID: 29731231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeing and sensing single G protein-coupled receptors by atomic force microscopy.
    Sapra KT; Spoerri PM; Engel A; Alsteens D; Müller DJ
    Curr Opin Cell Biol; 2019 Apr; 57():25-32. PubMed ID: 30412846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of structural distortions in the transmembrane helices of GPCRs.
    Deupi X
    Methods Mol Biol; 2012; 914():219-35. PubMed ID: 22976031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes.
    Bosshart PD; Engel A; Fotiadis D
    Methods Mol Biol; 2015; 1271():189-203. PubMed ID: 25697525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface.
    Filipek S; Krzysko KA; Fotiadis D; Liang Y; Saperstein DA; Engel A; Palczewski K
    Photochem Photobiol Sci; 2004 Jun; 3(6):628-38. PubMed ID: 15170495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput single-molecule force spectroscopy for membrane proteins.
    Bosshart PD; Casagrande F; Frederix PL; Ratera M; Bippes CA; Müller DJ; Palacin M; Engel A; Fotiadis D
    Nanotechnology; 2008 Sep; 19(38):384014. PubMed ID: 21832573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal packing analysis of Rhodopsin crystals.
    Lodowski DT; Salom D; Le Trong I; Teller DC; Ballesteros JA; Palczewski K; Stenkamp RE
    J Struct Biol; 2007 Jun; 158(3):455-62. PubMed ID: 17374491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling small molecule-compound binding to G-protein-coupled receptors.
    Vaidehi N; Pease JE; Horuk R
    Methods Enzymol; 2009; 460():263-88. PubMed ID: 19446730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional single-molecule binding assay via force spectroscopy.
    Cao Y; Balamurali MM; Sharma D; Li H
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15677-81. PubMed ID: 17895384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The study of G-protein coupled receptor oligomerization with computational modeling and bioinformatics.
    Filizola M; Weinstein H
    FEBS J; 2005 Jun; 272(12):2926-38. PubMed ID: 15955053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function.
    Kristiansen K
    Pharmacol Ther; 2004 Jul; 103(1):21-80. PubMed ID: 15251227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.