These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23799681)

  • 1. Validation of the inverse pulse wave transit time series as surrogate of systolic blood pressure in MVAR modeling.
    Giassi P; Okida S; Oliveira MG; Moraes R
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3176-84. PubMed ID: 23799681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers.
    Padilla JM; Berjano EJ; Sáiz J; Rodriguez R; Fácila L
    Cardiovasc Eng; 2009 Sep; 9(3):104-12. PubMed ID: 19657733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure.
    Payne RA; Symeonides CN; Webb DJ; Maxwell SR
    J Appl Physiol (1985); 2006 Jan; 100(1):136-41. PubMed ID: 16141378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse transit time as a surrogate measure of changes in systolic arterial pressure in children during sleep.
    Vlahandonis A; Biggs SN; Nixon GM; Davey MJ; Walter LM; Horne RS
    J Sleep Res; 2014 Aug; 23(4):406-13. PubMed ID: 24605887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station.
    Li K; Zhang S; Yang L; Luo Z; Gu G
    Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood pressure monitoring during exercise: comparison of pulse transit time and volume clamp methods.
    Wibmer T; Denner C; Fischer C; Schildge B; Rüdiger S; Kropf-Sanchen C; Rottbauer W; Schumann C
    Blood Press; 2015; 24(6):353-60. PubMed ID: 26286887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval.
    Fischer C; Penzel T
    Physiol Meas; 2019 Jan; 40(1):014001. PubMed ID: 30523856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of metronome breathing on the variability of autonomic activity measurements.
    Driscoll D; Dicicco G
    J Manipulative Physiol Ther; 2000; 23(9):610-4. PubMed ID: 11145801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slope Transit Time (STT): A Pulse Transit Time Proxy requiring Only a Single Signal Fiducial Point.
    Addison PS
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2441-2444. PubMed ID: 26890527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of local mild cold exposure on pulse transit time.
    Zhang XY; Zhang YT
    Physiol Meas; 2006 Jul; 27(7):649-60. PubMed ID: 16705262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serial changes of pulse wave velocity and correlations with hemodynamic parameters during general anesthesia.
    Chen YT; Chiayg CY; Wang MC; Tsai WC; Wu HT; Liu CC
    Acta Anaesthesiol Taiwan; 2006 Dec; 44(4):193-8. PubMed ID: 17233362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector autoregressive modeling for analyzing feedback regulation between heart rate and blood pressure.
    Matsukawa S; Wada T
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H478-86. PubMed ID: 9281300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis.
    Suhrbier A; Heringer R; Walther T; Malberg H; Wessel N
    Biomed Tech (Berl); 2006 Jul; 51(2):70-6. PubMed ID: 16915768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pulse wave analysis of normal pregnancy: investigating the gestational effects on photoplethysmographic signals.
    Su F; Li Z; Sun X; Han N; Wang L; Luo X
    Biomed Mater Eng; 2014; 24(1):209-19. PubMed ID: 24211900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities.
    Chen Y; Wen C; Tao G; Bi M
    Ann Biomed Eng; 2012 Apr; 40(4):871-82. PubMed ID: 22101758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects.
    Lu G; Yang F; Taylor JA; Stein JF
    J Med Eng Technol; 2009; 33(8):634-41. PubMed ID: 19848857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
    Baek HJ; Kim KK; Kim JS; Lee B; Park KS
    Physiol Meas; 2010 Feb; 31(2):145-57. PubMed ID: 20009186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.