BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 23799860)

  • 1. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior.
    Liu X; Chen Y; Li H; Huang N; Jin Q; Ren K; Ji J
    ACS Nano; 2013 Jul; 7(7):6244-57. PubMed ID: 23799860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.
    Li H; Liu X; Huang N; Ren K; Jin Q; Ji J
    ACS Appl Mater Interfaces; 2014; 6(21):18930-7. PubMed ID: 25286378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation.
    Liu X; Li H; Chen Y; Jin Q; Ren K; Ji J
    Adv Healthc Mater; 2014 Sep; 3(9):1439-47. PubMed ID: 24550205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles.
    Liu X; Huang H; Jin Q; Ji J
    Langmuir; 2011 May; 27(9):5242-51. PubMed ID: 21476529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant Staphylococcus aureus Biofilm.
    Hu D; Li H; Wang B; Ye Z; Lei W; Jia F; Jin Q; Ren KF; Ji J
    ACS Nano; 2017 Sep; 11(9):9330-9339. PubMed ID: 28806528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles.
    Tian Z; Yang C; Wang W; Yuan Z
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17865-76. PubMed ID: 25233129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars.
    Wang S; Teng Z; Huang P; Liu D; Liu Y; Tian Y; Sun J; Li Y; Ju H; Chen X; Lu G
    Small; 2015 Apr; 11(15):1801-10. PubMed ID: 25565411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y; Xia XH; Zhai HS
    Chemistry; 2007; 13(15):4197-202. PubMed ID: 17236228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface tailoring of nanoparticles via mixed-charge monolayers and their biomedical applications.
    Liu X; Li H; Jin Q; Ji J
    Small; 2014 Nov; 10(21):4230-42. PubMed ID: 25123827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions.
    Liu X; Huang H; Liu G; Zhou W; Chen Y; Jin Q; Ji J
    Nanoscale; 2013 May; 5(9):3982-91. PubMed ID: 23546384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy.
    Jung S; Nam J; Hwang S; Park J; Hur J; Im K; Park N; Kim S
    Anal Chem; 2013 Aug; 85(16):7674-81. PubMed ID: 23883363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.
    Xiao P; Li Q; Joo Y; Nam J; Hwang S; Song J; Kim S; Joo C; Kim KH
    Opt Lett; 2013 Nov; 38(21):4429-32. PubMed ID: 24177111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma.
    Ruan S; He Q; Gao H
    Nanoscale; 2015 Jun; 7(21):9487-96. PubMed ID: 25909483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge.
    Hühn D; Kantner K; Geidel C; Brandholt S; De Cock I; Soenen SJ; Rivera Gil P; Montenegro JM; Braeckmans K; Müllen K; Nienhaus GU; Klapper M; Parak WJ
    ACS Nano; 2013 Apr; 7(4):3253-63. PubMed ID: 23566380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor Chemo-Radiotherapy with Rod-Shaped and Spherical Gold Nano Probes: Shape and Active Targeting Both Matter.
    Zhang L; Su H; Wang H; Li Q; Li X; Zhou C; Xu J; Chai Y; Liang X; Xiong L; Zhang C
    Theranostics; 2019; 9(7):1893-1908. PubMed ID: 31037146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton-absorption-induced-luminescence (MAIL) imaging of tumor-targeted gold nanoparticles.
    Dowling MB; Li L; Park J; Kumi G; Nan A; Ghandehari H; Fourkas JT; DeShong P
    Bioconjug Chem; 2010 Nov; 21(11):1968-77. PubMed ID: 20964333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.