BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 23799860)

  • 21. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles.
    Susumu K; Oh E; Delehanty JB; Blanco-Canosa JB; Johnson BJ; Jain V; Hervey WJ; Algar WR; Boeneman K; Dawson PE; Medintz IL
    J Am Chem Soc; 2011 Jun; 133(24):9480-96. PubMed ID: 21612225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot synthesis of acid-induced in situ aggregating theranostic gold nanoparticles with enhanced retention in tumor cells.
    Cheng M; Zhang Y; Zhang X; Wang W; Yuan Z
    Biomater Sci; 2019 Apr; 7(5):2009-2022. PubMed ID: 30839987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pericellular matrix enhances retention and cellular uptake of nanoparticles.
    Zhou R; Zhou H; Xiong B; He Y; Yeung ES
    J Am Chem Soc; 2012 Aug; 134(32):13404-9. PubMed ID: 22861162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoparticle silica nanopeapods.
    Cong VT; Ganbold EO; Saha JK; Jang J; Min J; Choo J; Kim S; Song NW; Son SJ; Lee SB; Joo SW
    J Am Chem Soc; 2014 Mar; 136(10):3833-41. PubMed ID: 24517321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study.
    Quan X; Zhao D; Li L; Zhou J
    Langmuir; 2017 Dec; 33(50):14480-14489. PubMed ID: 29166558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin.
    Ali MR; Panikkanvalappil SR; El-Sayed MA
    J Am Chem Soc; 2014 Mar; 136(12):4464-7. PubMed ID: 24467386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Furin Enzyme and pH Synergistically Triggered Aggregation of Gold Nanoparticles for Activated Photoacoustic Imaging and Photothermal Therapy of Tumors.
    Cheng X; Zhou X; Xu J; Sun R; Xia H; Ding J; Chin YE; Chai Z; Shi H; Gao M
    Anal Chem; 2021 Jul; 93(26):9277-9285. PubMed ID: 34160212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery.
    Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S
    Biomaterials; 2009 Oct; 30(30):6065-75. PubMed ID: 19674777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent.
    Huang R; Carney RP; Stellacci F; Lau BL
    Nanoscale; 2013 Aug; 5(15):6928-35. PubMed ID: 23787874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles.
    Liu H; Liu T; Wang H; Li L; Tan L; Fu C; Nie G; Chen D; Tang F
    Biomaterials; 2013 Sep; 34(28):6967-75. PubMed ID: 23777913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles.
    Wong AC; Wright DW
    Small; 2016 Oct; 12(40):5592-5600. PubMed ID: 27562251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular uptake of densely packed polymer coatings on gold nanoparticles.
    Liang M; Lin IC; Whittaker MR; Minchin RF; Monteiro MJ; Toth I
    ACS Nano; 2010 Jan; 4(1):403-13. PubMed ID: 19947583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular Enzyme-Triggered Assembly of Amino Acid-Modified Gold Nanoparticles for Accurate Cancer Therapy with Multimode.
    Liu T; Jin R; Yuan P; Bai Y; Cai B; Chen X
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28621-28630. PubMed ID: 31293148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry.
    Hama S; Itakura S; Nakai M; Nakayama K; Morimoto S; Suzuki S; Kogure K
    J Control Release; 2015 May; 206():67-74. PubMed ID: 25770398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects.
    Yu M; Zhou C; Liu L; Zhang S; Sun S; Hankins JD; Sun X; Zheng J
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4314-4319. PubMed ID: 28295960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy.
    Saw WS; Ujihara M; Chong WY; Voon SH; Imae T; Kiew LV; Lee HB; Sim KS; Chung LY
    Colloids Surf B Biointerfaces; 2018 Jan; 161():365-374. PubMed ID: 29101882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy.
    Kang S; Bhang SH; Hwang S; Yoon JK; Song J; Jang HK; Kim S; Kim BS
    ACS Nano; 2015 Oct; 9(10):9678-90. PubMed ID: 26348606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering the pH-responsive catalytic behavior of AuNPs by DNA.
    Zhan P; Wang J; Wang ZG; Ding B
    Small; 2014 Jan; 10(2):399-406. PubMed ID: 24039035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface.
    Durantie E; Vanhecke D; Rodriguez-Lorenzo L; Delhaes F; Balog S; Septiadi D; Bourquin J; Petri-Fink A; Rothen-Rutishauser B
    Part Fibre Toxicol; 2017 Nov; 14(1):49. PubMed ID: 29187209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles.
    Brandenberger C; Mühlfeld C; Ali Z; Lenz AG; Schmid O; Parak WJ; Gehr P; Rothen-Rutishauser B
    Small; 2010 Aug; 6(15):1669-78. PubMed ID: 20602428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.