BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 23799990)

  • 1. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle.
    Jupe J; Stam R; Howden AJ; Morris JA; Zhang R; Hedley PE; Huitema E
    Genome Biol; 2013 Jun; 14(6):R63. PubMed ID: 23799990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus.
    Mafurah JJ; Ma H; Zhang M; Xu J; He F; Ye T; Shen D; Chen Y; Rajput NA; Dou D
    PLoS One; 2015; 10(5):e0127965. PubMed ID: 26011314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An NMRA-Like Protein Regulates Gene Expression in Phytophthora capsici to Drive the Infection Cycle on Tomato.
    Pham J; Stam R; Heredia VM; Csukai M; Huitema E
    Mol Plant Microbe Interact; 2018 Jun; 31(6):665-677. PubMed ID: 29419371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans.
    Zuluaga AP; Vega-Arreguín JC; Fei Z; Matas AJ; Patev S; Fry WE; Rose JK
    Mol Plant Pathol; 2016 Jan; 17(1):42-54. PubMed ID: 25808779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of the tomato nuclear proteome during Phytophthora capsici infection unveils regulators of immunity.
    Howden AJM; Stam R; Martinez Heredia V; Motion GB; Ten Have S; Hodge K; Marques Monteiro Amaro TM; Huitema E
    New Phytol; 2017 Jul; 215(1):309-322. PubMed ID: 28394025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.
    Li Q; Zhang M; Shen D; Liu T; Chen Y; Zhou JM; Dou D
    Sci Rep; 2016 May; 6():26951. PubMed ID: 27243217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts.
    Rey T; Schornack S
    Genome Biol; 2013 Jun; 14(6):121. PubMed ID: 23796072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3.
    Cui J; Xu P; Meng J; Li J; Jiang N; Luan Y
    Theor Appl Genet; 2018 Apr; 131(4):787-800. PubMed ID: 29234827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytophthora infection signals-induced translocation of NAC089 is required for endoplasmic reticulum stress response-mediated plant immunity.
    Ai G; Zhu H; Fu X; Liu J; Li T; Cheng Y; Zhou Y; Yang K; Pan W; Zhang H; Wu Z; Dong S; Xia Y; Wang Y; Xia A; Wang Y; Dou D; Jing M
    Plant J; 2021 Oct; 108(1):67-80. PubMed ID: 34374485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation.
    Neu E; Domes HS; Menz I; Kaufmann H; Linde M; Debener T
    Plant Mol Biol; 2019 Mar; 99(4-5):299-316. PubMed ID: 30706286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of lncRNA08489 enhances tomato immunity against Phytophthora infestans by decoying miR482e-3p.
    Liu W; Cui J; Luan Y
    Biochem Biophys Res Commun; 2022 Jan; 587():36-41. PubMed ID: 34864393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms.
    Ahn IP; Lee SW; Kim MG; Park SR; Hwang DJ; Bae SC
    Mol Cells; 2011 Jul; 32(1):7-14. PubMed ID: 21710203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-type lectin receptor kinases in Nicotiana benthamiana and tomato and their role in Phytophthora resistance.
    Wang Y; Weide R; Govers F; Bouwmeester K
    J Exp Bot; 2015 Nov; 66(21):6731-43. PubMed ID: 26248665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici.
    Quesada-Ocampo LM; Hausbeck MK
    Phytopathology; 2010 Jun; 100(6):619-27. PubMed ID: 20465418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato.
    Zuluaga AP; Vega-Arreguín JC; Fei Z; Ponnala L; Lee SJ; Matas AJ; Patev S; Fry WE; Rose JK
    Mol Plant Pathol; 2016 Jan; 17(1):29-41. PubMed ID: 25845484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to Phytophthora capsici in Nicotiana species.
    Vega-Arreguín JC; Jalloh A; Bos JI; Moffett P
    Mol Plant Microbe Interact; 2014 Aug; 27(8):770-80. PubMed ID: 24725207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effector-triggered immunity mediated by the Pto kinase.
    Oh CS; Martin GB
    Trends Plant Sci; 2011 Mar; 16(3):132-40. PubMed ID: 21112235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oomycete broad-host-range pathogen Phytophthora capsici.
    Lamour KH; Stam R; Jupe J; Huitema E
    Mol Plant Pathol; 2012 May; 13(4):329-37. PubMed ID: 22013895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of nine Phytophthora capsici pectin methylesterase genes which are differentially expressed in various plant species.
    Li P; Feng B; Wang H; Tooley PW; Zhang X
    J Basic Microbiol; 2011 Feb; 51(1):61-70. PubMed ID: 21259289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity.
    Fan G; Yang Y; Li T; Lu W; Du Y; Qiang X; Wen Q; Shan W
    Mol Plant; 2018 Aug; 11(8):1067-1083. PubMed ID: 29864524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.