These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 23800039)
1. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Boden SA; Kavanová M; Finnegan EJ; Wigge PA Genome Biol; 2013 Jun; 14(6):R65. PubMed ID: 23800039 [TBL] [Abstract][Full Text] [Related]
2. Identification of brassinosteroid genes in Brachypodium distachyon. Corvalán C; Choe S BMC Plant Biol; 2017 Jan; 17(1):5. PubMed ID: 28061864 [TBL] [Abstract][Full Text] [Related]
3. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Kumar SV; Wigge PA Cell; 2010 Jan; 140(1):136-47. PubMed ID: 20079334 [TBL] [Abstract][Full Text] [Related]
4. Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana. Galvão VC; Collani S; Horrer D; Schmid M Plant J; 2015 Dec; 84(5):949-62. PubMed ID: 26466761 [TBL] [Abstract][Full Text] [Related]
5. BdVIL4 regulates flowering time and branching through repressing miR156 in ambient temperature dependent way in Brachypodium distachyon. An Y; Guo Y; Liu C; An H Plant Physiol Biochem; 2015 Apr; 89():92-9. PubMed ID: 25728135 [TBL] [Abstract][Full Text] [Related]
6. High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Harsant J; Pavlovic L; Chiu G; Sultmanis S; Sage TL J Exp Bot; 2013 Jul; 64(10):2971-83. PubMed ID: 23771979 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. Cortijo S; Charoensawan V; Brestovitsky A; Buning R; Ravarani C; Rhodes D; van Noort J; Jaeger KE; Wigge PA Mol Plant; 2017 Oct; 10(10):1258-1273. PubMed ID: 28893714 [TBL] [Abstract][Full Text] [Related]
8. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. Barrero JM; Jacobsen JV; Talbot MJ; White RG; Swain SM; Garvin DF; Gubler F New Phytol; 2012 Jan; 193(2):376-86. PubMed ID: 22039925 [TBL] [Abstract][Full Text] [Related]
9. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon. Woods DP; Ream TS; Minevich G; Hobert O; Amasino RM Genetics; 2014 Sep; 198(1):397-408. PubMed ID: 25023399 [TBL] [Abstract][Full Text] [Related]
10. High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. Del Olmo I; Poza-Viejo L; Piñeiro M; Jarillo JA; Crevillén P Plant J; 2019 Oct; 100(2):343-356. PubMed ID: 31257648 [TBL] [Abstract][Full Text] [Related]
11. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. Trafford K; Haleux P; Henderson M; Parker M; Shirley NJ; Tucker MR; Fincher GB; Burton RA J Exp Bot; 2013 Nov; 64(16):5033-47. PubMed ID: 24052531 [TBL] [Abstract][Full Text] [Related]
12. Treatment Analogous to Seasonal Change Demonstrates the Integration of Cold Responses in Mayer BF; Bertrand A; Charron JB Plant Physiol; 2020 Feb; 182(2):1022-1038. PubMed ID: 31843801 [TBL] [Abstract][Full Text] [Related]
13. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204 [TBL] [Abstract][Full Text] [Related]
14. BdBRD1, a brassinosteroid C-6 oxidase homolog in Brachypodium distachyon L., is required for multiple organ development. Xu Y; Zhang X; Li Q; Cheng Z; Lou H; Ge L; An H Plant Physiol Biochem; 2015 Jan; 86():91-99. PubMed ID: 25438141 [TBL] [Abstract][Full Text] [Related]
15. Characterization of FLOWERING LOCUS T1 (FT1) gene in Brachypodium and wheat. Lv B; Nitcher R; Han X; Wang S; Ni F; Li K; Pearce S; Wu J; Dubcovsky J; Fu D PLoS One; 2014; 9(4):e94171. PubMed ID: 24718312 [TBL] [Abstract][Full Text] [Related]
16. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. Li C; Rudi H; Stockinger EJ; Cheng H; Cao M; Fox SE; Mockler TC; Westereng B; Fjellheim S; Rognli OA; Sandve SR BMC Plant Biol; 2012 May; 12():65. PubMed ID: 22569006 [TBL] [Abstract][Full Text] [Related]
17. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Deal RB; Topp CN; McKinney EC; Meagher RB Plant Cell; 2007 Jan; 19(1):74-83. PubMed ID: 17220196 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon. Himuro Y; Ishiyama K; Mori F; Gondo T; Takahashi F; Shinozaki K; Kobayashi M; Akashi R J Plant Physiol; 2014 Aug; 171(13):1127-31. PubMed ID: 24973584 [TBL] [Abstract][Full Text] [Related]
19. H2A.Z promotes the transcription of Xu M; Leichty AR; Hu T; Poethig RS Development; 2018 Jan; 145(2):. PubMed ID: 29361556 [TBL] [Abstract][Full Text] [Related]
20. VERNALIZATION1 represses FLOWERING PROMOTING FACTOR1-LIKE1 in leaves for timely flowering in Brachypodium distachyon. Liu S; Chen S; Zhou Y; Shen Y; Qin Z; Wu L Plant Cell; 2023 Sep; 35(10):3697-3711. PubMed ID: 37378548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]