These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 23800193)
1. A bacterial tyrosine aminomutase proceeds through retention or inversion of stereochemistry to catalyze its isomerization reaction. Wanninayake U; Walker KD J Am Chem Soc; 2013 Jul; 135(30):11193-204. PubMed ID: 23800193 [TBL] [Abstract][Full Text] [Related]
2. Unusual mechanism for an aminomutase rearrangement: retention of configuration at the migration termini. Mutatu W; Klettke KL; Foster C; Walker KD Biochemistry; 2007 Aug; 46(34):9785-94. PubMed ID: 17676876 [TBL] [Abstract][Full Text] [Related]
4. Stereochemistry and mechanism of a microbial phenylalanine aminomutase. Ratnayake ND; Wanninayake U; Geiger JH; Walker KD J Am Chem Soc; 2011 Jun; 133(22):8531-3. PubMed ID: 21561099 [TBL] [Abstract][Full Text] [Related]
5. A Tyrosine Aminomutase from Rice (Oryza sativa) Isomerizes (S)-α- to (R)-β-Tyrosine with Unique High Enantioselectivity and Retention of Configuration. Walter T; King Z; Walker KD Biochemistry; 2016 Jan; 55(1):1-4. PubMed ID: 26709535 [TBL] [Abstract][Full Text] [Related]
6. Investigation into isomerization reaction of phenylalanine aminomutase from Pantoea agglomerans. Zhu L; Yang J; Feng G; Ge F; Li W; Song P; Tao Y; Zhou Z Enzyme Microb Technol; 2020 Jan; 132():109428. PubMed ID: 31731949 [TBL] [Abstract][Full Text] [Related]
7. Insight into the mechanism of aminomutase reaction: a case study of phenylalanine aminomutase by computational approach. Wang K; Hou Q; Liu Y J Mol Graph Model; 2013 Nov; 46():65-73. PubMed ID: 24149320 [TBL] [Abstract][Full Text] [Related]
8. (S)-Styryl-α-alanine used to probe the intermolecular mechanism of an intramolecular MIO-aminomutase. Wanninayake U; Deporre Y; Ondari M; Walker KD Biochemistry; 2011 Nov; 50(46):10082-90. PubMed ID: 21985059 [TBL] [Abstract][Full Text] [Related]
10. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. Turner NJ Curr Opin Chem Biol; 2011 Apr; 15(2):234-40. PubMed ID: 21131229 [TBL] [Abstract][Full Text] [Related]
11. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Kawulka KE; Sprules T; Diaper CM; Whittal RM; McKay RT; Mercier P; Zuber P; Vederas JC Biochemistry; 2004 Mar; 43(12):3385-95. PubMed ID: 15035610 [TBL] [Abstract][Full Text] [Related]
12. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities. Attanayake G; Walter T; Walker KD Biochemistry; 2018 Jun; 57(25):3503-3514. PubMed ID: 29757631 [TBL] [Abstract][Full Text] [Related]
13. A new member of the 4-methylideneimidazole-5-one-containing aminomutase family from the enediyne kedarcidin biosynthetic pathway. Huang SX; Lohman JR; Huang T; Shen B Proc Natl Acad Sci U S A; 2013 May; 110(20):8069-74. PubMed ID: 23633564 [TBL] [Abstract][Full Text] [Related]
14. Preparation of unnatural amino acids with ammonia-lyases and 2,3-aminomutases. Poppe L; Paizs C; Kovács K; Irimie FD; Vértessy B Methods Mol Biol; 2012; 794():3-19. PubMed ID: 21956553 [TBL] [Abstract][Full Text] [Related]
15. Discovery of additional members of the tyrosine aminomutase enzyme family and the mutational analysis of CmdF. Krug D; Müller R Chembiochem; 2009 Mar; 10(4):741-50. PubMed ID: 19222035 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of MIO-based aminomutases in beta-amino acid biosynthesis. Christianson CV; Montavon TJ; Festin GM; Cooke HA; Shen B; Bruner SD J Am Chem Soc; 2007 Dec; 129(51):15744-5. PubMed ID: 18052279 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of the tyrosine ammonia lyase reaction-tandem nucleophilic and electrophilic enhancement by a proton transfer. Pilbák S; Farkas Ö; Poppe L Chemistry; 2012 Jun; 18(25):7793-802. PubMed ID: 22573540 [TBL] [Abstract][Full Text] [Related]
18. Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase. Koulikova VV; Zakomirdina LN; Gogoleva OI; Tsvetikova MA; Morozova EA; Komissarov VV; Tkachev YV; Timofeev VP; Demidkina TV; Faleev NG Amino Acids; 2011 Nov; 41(5):1247-56. PubMed ID: 21104284 [TBL] [Abstract][Full Text] [Related]
19. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
20. Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. Behshad E; Ruzicka FJ; Mansoorabadi SO; Chen D; Reed GH; Frey PA Biochemistry; 2006 Oct; 45(42):12639-46. PubMed ID: 17042480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]