These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23800346)

  • 1. Age and hemispheric differences in transcallosal inhibition between motor cortices: an ispsilateral silent period study.
    Davidson T; Tremblay F
    BMC Neurosci; 2013 Jun; 14():62. PubMed ID: 23800346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemispheric differences in corticospinal excitability and in transcallosal inhibition in relation to degree of handedness.
    Davidson T; Tremblay F
    PLoS One; 2013; 8(7):e70286. PubMed ID: 23936180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study.
    Giovannelli F; Borgheresi A; Balestrieri F; Zaccara G; Viggiano MP; Cincotta M; Ziemann U
    J Physiol; 2009 Nov; 587(Pt 22):5393-410. PubMed ID: 19770195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental profile of motor cortex transcallosal inhibition in children and adolescents.
    Ciechanski P; Zewdie E; Kirton A
    J Neurophysiol; 2017 Jul; 118(1):140-148. PubMed ID: 28381485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
    Lang N; Nitsche MA; Paulus W; Rothwell JC; Lemon RN
    Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcallosal conduction in paroxysmal kinesigenic dyskinesia.
    Kasikci T; Bek S; Koc G; Yucel M; Kutukcu Y; Odabasi Z
    Somatosens Mot Res; 2017 Dec; 34(4):235-241. PubMed ID: 29334840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke.
    Takeuchi N; Tada T; Matsuo Y; Ikoma K
    Neurorehabil Neural Repair; 2012 Oct; 26(8):988-98. PubMed ID: 22412170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of the transcallosal motor output: a transcranial magnetic stimulation study in healthy subjects.
    Trompetto C; Bove M; Marinelli L; Avanzino L; Buccolieri A; Abbruzzese G
    Exp Brain Res; 2004 Sep; 158(2):133-40. PubMed ID: 15118793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of alterations in transcallosal motor inhibition as a possible long-term consequence of concussions in sports: A transcranial magnetic stimulation study.
    Davidson TW; Tremblay F
    Clin Neurophysiol; 2016 Oct; 127(10):3364-75. PubMed ID: 27531393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handedness is mainly associated with an asymmetry of corticospinal excitability and not of transcallosal inhibition.
    De Gennaro L; Cristiani R; Bertini M; Curcio G; Ferrara M; Fratello F; Romei V; Rossini PM
    Clin Neurophysiol; 2004 Jun; 115(6):1305-12. PubMed ID: 15134697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of transcallosal inhibition measurements for the lower limb motor cortex in stroke.
    Sivaramakrishnan A; Madhavan S
    Neurosci Lett; 2021 Jan; 743():135558. PubMed ID: 33352282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study.
    Lenzi D; Conte A; Mainero C; Frasca V; Fubelli F; Totaro P; Caramia F; Inghilleri M; Pozzilli C; Pantano P
    Hum Brain Mapp; 2007 Jul; 28(7):636-44. PubMed ID: 17080438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interhemispheric inhibition and gait adaptation associations in people with multiple sclerosis.
    Hagen AC; Acosta JS; Swanson CW; Fling BW
    Exp Brain Res; 2024 Jul; 242(7):1761-1772. PubMed ID: 38822825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effort-induced mirror movements. A study of transcallosal inhibition in humans.
    Arányi Z; Rösler KM
    Exp Brain Res; 2002 Jul; 145(1):76-82. PubMed ID: 12070747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating activity in the motor cortex affects performance for the two hands differently depending upon which hemisphere is stimulated.
    Vines BW; Nair D; Schlaug G
    Eur J Neurosci; 2008 Oct; 28(8):1667-73. PubMed ID: 18973584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speed-dependent contribution of callosal pathways to ipsilateral movements.
    Tazoe T; Perez MA
    J Neurosci; 2013 Oct; 33(41):16178-88. PubMed ID: 24107950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles.
    Stinear CM; Walker KS; Byblow WD
    Exp Brain Res; 2001 Jul; 139(1):101-5. PubMed ID: 11482835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs.
    Fujiyama H; Hinder MR; Schmidt MW; Garry MI; Summers JJ
    Neurobiol Aging; 2012 Jul; 33(7):1484.e1-14. PubMed ID: 22257984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handedness and the excitability of cortical inhibitory circuits.
    Reid CS; Serrien DJ
    Behav Brain Res; 2012 Apr; 230(1):144-8. PubMed ID: 22343128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.