BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23800372)

  • 21. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
    Johnson WP; Li X; Yal G
    Environ Sci Technol; 2007 Feb; 41(4):1279-87. PubMed ID: 17593731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental analysis of colloid capture by a cylindrical collector in laminar overland flow.
    Wu L; Gao B; Muñoz-Carpena R
    Environ Sci Technol; 2011 Sep; 45(18):7777-84. PubMed ID: 21809854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2009 Jun; 25(12):6968-76. PubMed ID: 19334745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers.
    Ma H; Pazmino E; Johnson WP
    Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength.
    Zhang H; Selim HM
    J Environ Qual; 2007; 36(5):1273-80. PubMed ID: 17636288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial forces between silica surfaces measured by atomic force microscopy.
    Duan J
    J Environ Sci (China); 2009; 21(1):30-4. PubMed ID: 19402396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy.
    Xu LC; Logan BE
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):84-94. PubMed ID: 16500091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling colloid-facilitated transport of multi-species contaminants in unsaturated porous media.
    Massoudieh A; Ginn TR
    J Contam Hydrol; 2007 Jul; 92(3-4):162-83. PubMed ID: 17293000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct calibration of colloidal probe cantilevers via Derjaguin, Landau, Verwey, and Overbeek surface forces in electrolyte solution.
    Hong X; Willing GA
    Rev Sci Instrum; 2008 Dec; 79(12):123709. PubMed ID: 19123571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2017 Feb; 150():41-49. PubMed ID: 27870993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of different methods to measure contact angles of soil colloids.
    Shang J; Flury M; Harsh JB; Zollars RL
    J Colloid Interface Sci; 2008 Dec; 328(2):299-307. PubMed ID: 18930239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction forces between colloidal particles in liquid: theory and experiment.
    Liang Y; Hilal N; Langston P; Starov V
    Adv Colloid Interface Sci; 2007 Oct; 134-135():151-66. PubMed ID: 17499205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring the influence of solution chemistry on the adhesion of au nanoparticles to mica using colloid probe atomic force microscopy.
    Thio BJ; Lee JH; Meredith JC; Keller AA
    Langmuir; 2010 Sep; 26(17):13995-4003. PubMed ID: 20806965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific ion effects: why DLVO theory fails for biology and colloid systems.
    Boström M; Williams DR; Ninham BW
    Phys Rev Lett; 2001 Oct; 87(16):168103. PubMed ID: 11690249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal transport driven by seawater-freshwater interface dynamics: The role of colloid mobilization and aquifer pore structure change.
    Tan B; Liu C; Tan X; You X; Dai C; Liu S; Li J; Li N
    Water Res; 2022 Jun; 217():118370. PubMed ID: 35405553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.
    Cey EE; Rudolph DL; Passmore J
    J Contam Hydrol; 2009 Jun; 107(1-2):45-57. PubMed ID: 19435645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.