BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 23800384)

  • 1. Disuse-induced muscle wasting.
    Bodine SC
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2200-8. PubMed ID: 23800384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allopurinol partially prevents disuse muscle atrophy in mice and humans.
    Ferrando B; Gomez-Cabrera MC; Salvador-Pascual A; Puchades C; Derbré F; Gratas-Delamarche A; Laparre L; Olaso-Gonzalez G; Cerda M; Viosca E; Alabajos A; Sebastiá V; Alberich-Bayarri A; García-Castro F; Viña J
    Sci Rep; 2018 Feb; 8(1):3549. PubMed ID: 29476130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis.
    Nakanishi R; Hirayama Y; Tanaka M; Maeshige N; Kondo H; Ishihara A; Roy RR; Fujino H
    Nutr Res; 2016 Dec; 36(12):1335-1344. PubMed ID: 27866827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss.
    Bajotto G; Shimomura Y
    J Nutr Sci Vitaminol (Tokyo); 2006 Aug; 52(4):233-47. PubMed ID: 17087049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats.
    Baehr LM; West DWD; Marshall AG; Marcotte GR; Baar K; Bodine SC
    J Appl Physiol (1985); 2017 May; 122(5):1336-1350. PubMed ID: 28336537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling mechanisms involved in disuse muscle atrophy.
    Zhang P; Chen X; Fan M
    Med Hypotheses; 2007; 69(2):310-21. PubMed ID: 17376604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.
    Morales MG; Abrigo J; Acuña MJ; Santos RA; Bader M; Brandan E; Simon F; Olguin H; Cabrera D; Cabello-Verrugio C
    Dis Model Mech; 2016 Apr; 9(4):441-9. PubMed ID: 26851244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures.
    Gao Y; Arfat Y; Wang H; Goswami N
    Front Physiol; 2018; 9():235. PubMed ID: 29615929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.
    Baehr LM; West DW; Marcotte G; Marshall AG; De Sousa LG; Baar K; Bodine SC
    Aging (Albany NY); 2016 Jan; 8(1):127-46. PubMed ID: 26826670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis.
    Krawiec BJ; Frost RA; Vary TC; Jefferson LS; Lang CH
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E969-80. PubMed ID: 16046454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome.
    Sandri M
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2121-9. PubMed ID: 23665154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavan 3-ol delays the progression of disuse atrophy induced by hindlimb suspension in mice.
    Ito M; Kudo N; Miyake Y; Imai T; Unno T; Yamashita Y; Hirota Y; Ashida H; Osakabe N
    Exp Gerontol; 2017 Nov; 98():120-123. PubMed ID: 28807824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin targeting of rat muscle proteins during short periods of unloading.
    Vermaelen M; Marini JF; Chopard A; Benyamin Y; Mercier J; Astier C
    Acta Physiol Scand; 2005 Sep; 185(1):33-40. PubMed ID: 16128695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice.
    Zhang P; Li W; Liu H; Li J; Wang J; Li Y; Chen X; Yang Z; Fan M
    Cell Biochem Biophys; 2014 Nov; 70(2):1057-67. PubMed ID: 24839113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.