BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23800412)

  • 1. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein.
    Sarankó H; Tordai H; Telbisz Á; Özvegy-Laczka C; Erdős G; Sarkadi B; Hegedűs T
    Biochem Biophys Res Commun; 2013 Jul; 437(1):140-5. PubMed ID: 23800412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk.
    Li R; Miao L; Qin L; Xiang Y; Zhang X; Peng H; Mailamuguli ; Sun Y; Yao H
    Int J Clin Exp Pathol; 2015; 8(9):9812-23. PubMed ID: 26617691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2.
    Tamura A; Wakabayashi K; Onishi Y; Takeda M; Ikegami Y; Sawada S; Tsuji M; Matsuda Y; Ishikawa T
    Cancer Sci; 2007 Feb; 98(2):231-9. PubMed ID: 17297656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Characterization of Clinically-Relevant Rare Variants in
    Toyoda Y; Mančíková A; Krylov V; Morimoto K; Pavelcová K; Bohatá J; Pavelka K; Pavlíková M; Suzuki H; Matsuo H; Takada T; Stiburkova B
    Cells; 2019 Apr; 8(4):. PubMed ID: 31003562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing mutations disrupt interactions between the nucleotide binding and transmembrane domains of P-glycoprotein and the cystic fibrosis transmembrane conductance regulator (CFTR).
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2008 Oct; 283(42):28190-7. PubMed ID: 18708637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting roles of the ABCG2 Q141K variant in prostate cancer.
    Sobek KM; Cummings JL; Bacich DJ; O'Keefe DS
    Exp Cell Res; 2017 May; 354(1):40-47. PubMed ID: 28300564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro identification of decreased function phenotype ABCG2 variants.
    Suominen L; Sjöstedt N; Vellonen KS; Gynther M; Auriola S; Kidron H
    Eur J Pharm Sci; 2023 Sep; 188():106527. PubMed ID: 37451410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular expression and function of naturally occurring variants of the human ABCG2 multidrug transporter.
    Zámbó B; Mózner O; Bartos Z; Török G; Várady G; Telbisz Á; Homolya L; Orbán TI; Sarkadi B
    Cell Mol Life Sci; 2020 Jan; 77(2):365-378. PubMed ID: 31254042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frequency of rs2231142 in
    Alrajeh K; Roman YM
    Pharmacogenomics; 2023 Jan; 24(1):15-26. PubMed ID: 36651271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABCG transporters and disease.
    Woodward OM; Köttgen A; Köttgen M
    FEBS J; 2011 Sep; 278(18):3215-25. PubMed ID: 21554546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacogenomics with red cells: a model to study protein variants of drug transporter genes.
    Flegel WA; Srivastava K; Sissung TM; Goldspiel BR; Figg WD
    Vox Sang; 2021 Feb; 116(2):141-154. PubMed ID: 32996603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel mouse model of hyperuricemia expressing a human functional ABCG2 variant.
    Köttgen A; Köttgen M
    Kidney Int; 2021 Jan; 99(1):12-14. PubMed ID: 33390224
    [No Abstract]   [Full Text] [Related]  

  • 13. A conserved WXXE motif is an apical delivery determinant of ABC transporter C subfamily isoforms.
    Haque MS; Emi Y; Sakaguchi M
    Cell Struct Funct; 2023 Mar; 48(1):71-82. PubMed ID: 36696993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing ATPase activity of ATP-binding cassette subfamily C member 4, lamprey CFTR, and human CFTR using an antimony-phosphomolybdate assay.
    Cui G; Strickland KM; Vazquez Cegla AJ; McCarty NA
    Front Pharmacol; 2024; 15():1363456. PubMed ID: 38440176
    [No Abstract]   [Full Text] [Related]  

  • 15. Expression, Function and Trafficking of the Human ABCG2 Multidrug Transporter Containing Mutations in an Unstructured Cytoplasmic Loop.
    Mózner O; Zámbó B; Bartos Z; Gergely A; Szabó KS; Jezsó B; Telbisz Á; Várady G; Homolya L; Hegedűs T; Sarkadi B
    Membranes (Basel); 2023 Oct; 13(10):. PubMed ID: 37887994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening the expression of ABCB6 in erythrocytes reveals an unexpectedly high frequency of Lan mutations in healthy individuals.
    Koszarska M; Kucsma N; Kiss K; Varady G; Gera M; Antalffy G; Andrikovics H; Tordai A; Studzian M; Strapagiel D; Pulaski L; Tani Y; Sarkadi B; Szakacs G
    PLoS One; 2014; 9(10):e111590. PubMed ID: 25360778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins.
    Ji J; Cui MK; Zou R; Wu MZ; Ge MX; Li J; Zhang ZR
    Mol Cell; 2024 May; 84(10):1917-1931.e15. PubMed ID: 38723633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the impact of ABCG2 polymorphisms on drug pharmacokinetics: focus on rosuvastatin and allopurinol.
    Kasten A; Cascorbi I
    Expert Opin Drug Metab Toxicol; 2024 Jun; 20(6):519-528. PubMed ID: 38809523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression.
    Zámbó B; Bartos Z; Mózner O; Szabó E; Várady G; Poór G; Pálinkás M; Andrikovics H; Hegedűs T; Homolya L; Sarkadi B
    Sci Rep; 2018 May; 8(1):7487. PubMed ID: 29749379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion.
    Hoque KM; Dixon EE; Lewis RM; Allan J; Gamble GD; Phipps-Green AJ; Halperin Kuhns VL; Horne AM; Stamp LK; Merriman TR; Dalbeth N; Woodward OM
    Nat Commun; 2020 Jun; 11(1):2767. PubMed ID: 32488095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.