These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23800650)

  • 1. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery.
    San H; Yao S; Wang X; Cheng Z; Chen X
    Appl Radiat Isot; 2013 Oct; 80():17-22. PubMed ID: 23800650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode.
    Liu Y; Hu R; Yang Y; Wang G; Luo S; Liu N
    Appl Radiat Isot; 2012 Mar; 70(3):438-41. PubMed ID: 22119560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Betavoltaic battery performance: Comparison of modeling and experiment.
    Svintsov AA; Krasnov AA; Polikarpov MA; Polyakov AY; Yakimov EB
    Appl Radiat Isot; 2018 Jul; 137():184-189. PubMed ID: 29655122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and simulation of betavoltaic battery using large-grain polysilicon.
    Yao S; Song Z; Wang X; San H; Yu Y
    Appl Radiat Isot; 2012 Oct; 70(10):2388-94. PubMed ID: 22871443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization design of betavoltaic battery based on titanium tritide and silicon using Monte Carlo code.
    Wu M; Wang S; Ou Y; Wang W
    Appl Radiat Isot; 2018 Dec; 142():22-27. PubMed ID: 30245438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.
    Gui G; Zhang K; Blanchard JP; Ma Z
    Appl Radiat Isot; 2016 Jan; 107():272-277. PubMed ID: 26583261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of betavoltaic battery output parameters based on SEM measurements and Monte Carlo simulation.
    Yakimov EB
    Appl Radiat Isot; 2016 Jun; 112():98-102. PubMed ID: 27017084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D GaN-based betavoltaic device design with high energy transfer efficiency.
    Hogan K; Litz M; Shahedipour-Sandvik F
    Appl Radiat Isot; 2019 Mar; 145():154-160. PubMed ID: 30639631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy conversion efficiency in betavoltaic cells based on the diamond Schottky diode with a thin drift layer.
    Grushko V; Beliuskina O; Mamalis A; Lysakovskiy V; Mitskevich E; Kiriev A; Petrosyan E; Chaplynskyi R; Bezshyyko O; Lysenko O
    Appl Radiat Isot; 2020 Mar; 157():109017. PubMed ID: 31889676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple theoretical model for ⁶³Ni betavoltaic battery.
    Zuo G; Zhou J; Ke G
    Appl Radiat Isot; 2013 Dec; 82():119-25. PubMed ID: 23974307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts.
    Mamor M
    J Phys Condens Matter; 2009 Aug; 21(33):335802. PubMed ID: 21828610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta particle transport and its impact on betavoltaic battery modeling.
    Alam TR; Pierson MA; Prelas MA
    Appl Radiat Isot; 2017 Dec; 130():80-89. PubMed ID: 28942333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodology for efficiency optimization of betavoltaic cell design using an isotropic planar source having an energy dependent beta particle distribution.
    Theirrattanakul S; Prelas M
    Appl Radiat Isot; 2017 Sep; 127():41-46. PubMed ID: 28505506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency.
    Sandupatla A; Arulkumaran S; Ranjan K; Ng GI; Murmu PP; Kennedy J; Nitta S; Honda Y; Deki M; Amano H
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors.
    Sandupatla A; Arulkumaran S; Ing NG; Nitta S; Kennedy J; Amano H
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal contacts in nanocrystalline n-type GaN: Schottky diodes.
    Das SN; Sarangi S; Sahu SN; Pal AK
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2532-9. PubMed ID: 19437998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.
    Lee SY; Kim TH; Chol NK; Seong HK; Choi HJ; Ahn BG; Lee SK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5042-6. PubMed ID: 19198387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale.
    Fisichella G; Greco G; Roccaforte F; Giannazzo F
    Nanoscale; 2014 Aug; 6(15):8671-80. PubMed ID: 24946753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schottky barrier thin film transistors using solution-processed n-ZnO.
    Adl AH; Ma A; Gupta M; Benlamri M; Tsui YY; Barlage DW; Shankar K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1423-8. PubMed ID: 22387678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.