BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 23800735)

  • 1. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.
    Sasano Y; Haitani Y; Hashida K; Oshiro S; Shima J; Takagi H
    Int J Food Microbiol; 2013 Aug; 165(3):241-5. PubMed ID: 23800735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.
    Lin X; Zhang CY; Bai XW; Feng B; Xiao DG
    Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
    Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H
    Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Microb Cell Fact; 2012 Apr; 11():40. PubMed ID: 22462683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
    Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.
    Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H
    Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough.
    Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG
    Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.
    Sasano Y; Takahashi S; Shima J; Takagi H
    Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.
    Nakagawa Y; Ogihara H; Mochizuki C; Yamamura H; Iimura Y; Hayakawa M
    J Biosci Bioeng; 2017 Mar; 123(3):319-326. PubMed ID: 27829542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.
    Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough.
    Zhang CY; Bai XW; Lin X; Liu XE; Xiao DG
    J Food Sci; 2015 Dec; 80(12):M2879-85. PubMed ID: 26580148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.
    Izawa S; Ikeda K; Takahashi N; Inoue Y
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.
    Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F
    Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker's yeast in lean dough.
    Zhang CY; Lin X; Song HY; Xiao DG
    World J Microbiol Biotechnol; 2015 Aug; 31(8):1241-9. PubMed ID: 26003653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of NTH1 and HSP12 increases the freeze-thaw resistance of baker's yeast in bread dough.
    Chen BC; Lin HY
    Microb Cell Fact; 2022 Jul; 21(1):149. PubMed ID: 35879798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of overexpression of SNF1 on the transcriptional and metabolic landscape of baker's yeast under freezing stress.
    Meng L; Yang X; Lin X; Jiang HY; Hu XP; Liu SX
    Microb Cell Fact; 2021 Jan; 20(1):10. PubMed ID: 33413411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids.
    Magalhães F; Calton A; Heiniö RL; Gibson B
    Food Microbiol; 2021 Apr; 94():103640. PubMed ID: 33279066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.
    Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.