These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23800757)

  • 21. Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation.
    Maruyama-Nakashita A; Nakamura Y; Yamaya T; Takahashi H
    J Exp Bot; 2004 Aug; 55(404):1843-9. PubMed ID: 15208340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate.
    Maillard A; Sorin E; Etienne P; Diquélou S; Koprivova A; Kopriva S; Arkoun M; Gallardo K; Turner M; Cruz F; Yvin JC; Ourry A
    PLoS One; 2016; 11(11):e0166910. PubMed ID: 27870884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance.
    Forsberg SK; Andreatta ME; Huang XY; Danku J; Salt DE; Carlborg Ö
    PLoS Genet; 2015 Nov; 11(11):e1005648. PubMed ID: 26599497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Algae and humans share a molybdate transporter.
    Tejada-Jiménez M; Galván A; Fernández E
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6420-5. PubMed ID: 21464289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant
    Weber JN; Minner-Meinen R; Kaufholdt D
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molybdenum: More than an essential element.
    Huang XY; Hu DW; Zhao FJ
    J Exp Bot; 2022 Mar; 73(6):1766-1774. PubMed ID: 34864981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant aquaporins: novel functions and regulation properties.
    Maurel C
    FEBS Lett; 2007 May; 581(12):2227-36. PubMed ID: 17382935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo detection of molybdate-binding proteins using a competition assay with ModE in Escherichia coli.
    Kuper J; Meyer zu Berstenhorst S; Vödisch B; Mendel RR; Schwarz G; Boxer DH
    FEMS Microbiol Lett; 2003 Jan; 218(1):187-93. PubMed ID: 12583917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production.
    Rodrigo-Moreno A; Andrés-Colás N; Poschenrieder C; Gunsé B; Peñarrubia L; Shabala S
    Plant Cell Environ; 2013 Apr; 36(4):844-55. PubMed ID: 23046313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The function of nitrate transporters NRT1 in plants].
    Warzybok A; Migock M
    Postepy Biochem; 2012; 58(1):61-8. PubMed ID: 23214130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The monosaccharide transporter(-like) gene family in Arabidopsis.
    Büttner M
    FEBS Lett; 2007 May; 581(12):2318-24. PubMed ID: 17379213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.
    Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK
    Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular physiology of higher plant sucrose transporters.
    Sauer N
    FEBS Lett; 2007 May; 581(12):2309-17. PubMed ID: 17434165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The First Step of
    Wajmann S; Hercher TW; Buchmeier S; Hänsch R; Mendel RR; Kruse T
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32272807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repression of nitrate uptake by replacement of Asp105 by asparagine in AtNRT3.1 in Arabidopsis thaliana L.
    Kawachi T; Sunaga Y; Ebato M; Hatanaka T; Harada H
    Plant Cell Physiol; 2006 Oct; 47(10):1437-41. PubMed ID: 16980702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative genomics of molybdenum utilization in prokaryotes and eukaryotes.
    Peng T; Xu Y; Zhang Y
    BMC Genomics; 2018 Sep; 19(1):691. PubMed ID: 30231876
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Tejada-Jimenez M; Leon-Miranda E; Llamas A
    Microorganisms; 2023 Jun; 11(7):. PubMed ID: 37512844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of molybdenum in agricultural plant production.
    Kaiser BN; Gridley KL; Ngaire Brady J; Phillips T; Tyerman SD
    Ann Bot; 2005 Oct; 96(5):745-54. PubMed ID: 16033776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr.Y9.
    Yunus SM; Hamim HM; Anas OM; Aripin SN; Arif SM
    Pol J Microbiol; 2009; 58(2):141-7. PubMed ID: 19824398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.