BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23801070)

  • 1. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better.
    Lee TR; Choi M; Kopacz AM; Yun SH; Liu WK; Decuzzi P
    Sci Rep; 2013; 3():2079. PubMed ID: 23801070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Wall Migration Dynamics of Erythrocytes
    Namgung B; Ng YC; Leo HL; Rifkind JM; Kim S
    Front Physiol; 2017; 8():963. PubMed ID: 29238303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube.
    Saadatmand M; Ishikawa T; Matsuki N; Jafar Abdekhodaie M; Imai Y; Ueno H; Yamaguchi T
    J Biomech; 2011 Jan; 44(1):170-5. PubMed ID: 20887991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale.
    Cooley M; Sarode A; Hoore M; Fedosov DA; Mitragotri S; Sen Gupta A
    Nanoscale; 2018 Aug; 10(32):15350-15364. PubMed ID: 30080212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape.
    D'Apolito R; Tomaiuolo G; Taraballi F; Minardi S; Kirui D; Liu X; Cevenini A; Palomba R; Ferrari M; Salvatore F; Tasciotti E; Guido S
    J Control Release; 2015 Nov; 217():263-72. PubMed ID: 26381900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic interactions between red blood cells and drug carriers by image analysis techniques.
    D'Apolito R; Taraballi F; Minardi S; Liu X; Caserta S; Cevenini A; Tasciotti E; Tomaiuolo G; Guido S
    Med Eng Phys; 2016 Jan; 38(1):17-23. PubMed ID: 26651215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of particle size, density and shape on margination of nanoparticles in microcirculation.
    Toy R; Hayden E; Shoup C; Baskaran H; Karathanasis E
    Nanotechnology; 2011 Mar; 22(11):115101. PubMed ID: 21387846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectories and deposition sites of spherical particles moving inside rhythmically expanding alveoli under gravity-free conditions.
    Haber S; Yitzhak D; Tsuda A
    J Aerosol Med Pulm Drug Deliv; 2010 Dec; 23(6):405-13. PubMed ID: 20500094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Margination of micro- and nano-particles in blood flow and its effect on drug delivery.
    Müller K; Fedosov DA; Gompper G
    Sci Rep; 2014 May; 4():4871. PubMed ID: 24786000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous Microsponge Particles (NMP) of Polysaccharides as Universal Carriers for Biomolecules Delivery.
    Caso MF; Carotenuto F; Di Nardo P; Migliore A; Aguilera A; Lopez CM; Venanzi M; Cavalieri F; Rinaldi A
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel.
    Ye H; Shen Z; Wei M; Li Y
    Soft Matter; 2021 Jan; 17(1):40-56. PubMed ID: 33285555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-image particle tracking velocimetry of the microcirculation using fluorescent nanoparticles.
    Ravnic DJ; Zhang YZ; Tsuda A; Pratt JP; Huss HT; Mentzer SJ
    Microvasc Res; 2006; 72(1-2):27-33. PubMed ID: 16806290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamics in the microcirculation and in microfluidics.
    Omori T; Imai Y; Kikuchi K; Ishikawa T; Yamaguchi T
    Ann Biomed Eng; 2015 Jan; 43(1):238-57. PubMed ID: 25398331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The margination propensity of spherical particles for vascular targeting in the microcirculation.
    Gentile F; Curcio A; Indolfi C; Ferrari M; Decuzzi P
    J Nanobiotechnology; 2008 Aug; 6():9. PubMed ID: 18702833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis.
    Hayashi K; Yamada S; Hayashi H; Sakamoto W; Yogo T
    Biomaterials; 2018 Feb; 156():45-55. PubMed ID: 29190497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
    Tan J; Thomas A; Liu Y
    Soft Matter; 2011 Dec; 8():1934-1946. PubMed ID: 22375153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.