These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23801070)

  • 21. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microhemodynamic parameters quantification from intravital microscopy videos.
    Ortiz D; Briceño JC; Cabrales P
    Physiol Meas; 2014 Mar; 35(3):351-67. PubMed ID: 24480871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
    Tan J; Thomas A; Liu Y
    Soft Matter; 2011 Dec; 8():1934-1946. PubMed ID: 22375153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A stochastic view on column efficiency.
    Gritti F
    J Chromatogr A; 2018 Mar; 1540():55-67. PubMed ID: 29448995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
    Chesnutt JK; Marshall JS
    Microvasc Res; 2009 Dec; 78(3):301-13. PubMed ID: 19766127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic insights derived from retardation and peak broadening of particles up to 200 nm in diameter in electrophoresis in semidilute polyacrylamide solutions.
    Radko SP; Chrambach A
    Electrophoresis; 1998 Oct; 19(14):2423-31. PubMed ID: 9820962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Margination of Fluorescent Polylactic Acid-Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure.
    Craparo EF; D'Apolito R; Giammona G; Cavallaro G; Tomaiuolo G
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29143777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.
    Sarin H
    J Angiogenes Res; 2010 Aug; 2():14. PubMed ID: 20701757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red blood cells radial dispersion in blood flowing through microchannels: The role of temperature.
    Pinho D; Rodrigues RO; Faustino V; Yaginuma T; Exposto J; Lima R
    J Biomech; 2016 Jul; 49(11):2293-2298. PubMed ID: 26671221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow.
    Guilbert C; Chayer B; Allard L; Yu FTH; Cloutier G
    J Biomech; 2017 Aug; 61():26-33. PubMed ID: 28720200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Platelet kinetics in the pulmonary microcirculation in vivo assessed by intravital microscopy.
    Eichhorn ME; Ney L; Massberg S; Goetz AE
    J Vasc Res; 2002; 39(4):330-9. PubMed ID: 12187123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liver microcirculation analysis by red blood cell motion modeling in intravital microscopy images.
    Kamoun WS; Schmugge SJ; Kraftchick JP; Clemens MG; Shin MC
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):162-70. PubMed ID: 18232358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of in-vitro dispersion and deposition of nanoparticles in dry-powder-inhaler aerosols.
    Mendes PJ; Pinto JF; Sousa JM
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2791-7. PubMed ID: 20355503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of bio-mimetic particles with enhanced vascular interaction.
    Lee SY; Ferrari M; Decuzzi P
    J Biomech; 2009 Aug; 42(12):1885-90. PubMed ID: 19523635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of polymer nano- and microspheres by vinyl polymerization techniques.
    Arshady R
    J Microencapsul; 1988; 5(2):101-14. PubMed ID: 3058923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracking Nano- and Microplastics Accumulation and Egestion in a Marine Copepod by Novel Fluorescent AIEgens: Kinetic Modeling of the Rhythm Behavior.
    Dong Z; Wang WX
    Environ Sci Technol; 2023 Dec; 57(49):20761-20772. PubMed ID: 38029324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.