These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23801125)

  • 1. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation.
    Solovchenko A; Khozin-Goldberg I
    Biotechnol Lett; 2013 Nov; 35(11):1745-52. PubMed ID: 23801125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.
    Van Den Hende S; Vervaeren H; Boon N
    Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide capture strategies from flue gas using microalgae: a review.
    Thomas DM; Mechery J; Paulose SV
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16926-40. PubMed ID: 27397026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerance of the Photosynthetic Apparatus to Acidification of the Growth Medium as a Possible Determinant of CO
    Ptushenko VV; Solovchenko AE
    Biochemistry (Mosc); 2016 Dec; 81(12):1531-1537. PubMed ID: 28259130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [CO2 sequestration coupled with industrial cultivation of microalgae].
    Zhang F; Xiang W; Xiao B; Chen P
    Wei Sheng Wu Xue Bao; 2012 Nov; 52(11):1378-84. PubMed ID: 23383509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery.
    Seth JR; Wangikar PP
    Biotechnol Bioeng; 2015 Jul; 112(7):1281-96. PubMed ID: 25899427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances.
    Wilhelm C; Jakob T
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):909-19. PubMed ID: 22005740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprospecting microalgae as potential sources of "green energy"--challenges and perspectives (review).
    Ratha SK; Prasanna R
    Prikl Biokhim Mikrobiol; 2012; 48(2):133-49. PubMed ID: 22586907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofixation of Air Emissions and Biomass Valorization-Evaluation of Microalgal Biotechnology.
    Biscaia WL; Miyawaki B; de Mello TC; de Vasconcelos EC; de Arruda NMB; Maranho LT
    Appl Biochem Biotechnol; 2022 Sep; 194(9):4033-4048. PubMed ID: 35587326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal symbiosis in biotechnology.
    Santos CA; Reis A
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5839-46. PubMed ID: 24816618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion.
    Ventura JR; Yang B; Lee YW; Lee K; Jahng D
    Bioresour Technol; 2013 Jun; 137():302-10. PubMed ID: 23587833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas.
    Zhu X; Rong J; Chen H; He C; Hu W; Wang Q
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2073-82. PubMed ID: 26754812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of the economic aspects of CO2 sequestration in a route for biodiesel production from microalgae.
    Soares FR; Martins G; Seo ES
    Environ Technol; 2013; 34(13-16):1777-81. PubMed ID: 24350434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant.
    Cheng J; Yang Z; Huang Y; Huang L; Hu L; Xu D; Zhou J; Cen K
    Bioresour Technol; 2015 Aug; 190():235-41. PubMed ID: 25958147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.