These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23801125)

  • 21. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofuels from microalgae.
    Li Y; Horsman M; Wu N; Lan CQ; Dubois-Calero N
    Biotechnol Prog; 2008; 24(4):815-20. PubMed ID: 18335954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A promising approach to enhance microalgae productivity by exogenous supply of vitamins.
    Tandon P; Jin Q; Huang L
    Microb Cell Fact; 2017 Nov; 16(1):219. PubMed ID: 29183381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microalgae-based biorefinery--from biofuels to natural products.
    Yen HW; Hu IC; Chen CY; Ho SH; Lee DJ; Chang JS
    Bioresour Technol; 2013 May; 135():166-74. PubMed ID: 23206809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system.
    Chi Z; Elloy F; Xie Y; Hu Y; Chen S
    Appl Biochem Biotechnol; 2014 Jan; 172(1):447-57. PubMed ID: 24092450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae).
    Lachmann SC; Maberly SC; Spijkerman E
    J Phycol; 2016 Dec; 52(6):1051-1063. PubMed ID: 27624741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiency of CO2 fixation by microalgae in a closed raceway pond.
    Li S; Luo S; Guo R
    Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO
    Wei L; Shen C; El Hajjami M; You W; Wang Q; Zhang P; Ji Y; Hu H; Hu Q; Poetsch A; Xu J
    Metab Eng; 2019 Jul; 54():96-108. PubMed ID: 30904735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo transcriptome and lipidome analysis of Desmodesmus abundans under model flue gas reveals adaptive changes after ten years of acclimation to high CO2.
    Mora-Godínez S; Senés-Guerrero C; Pacheco A
    PLoS One; 2024; 19(5):e0299780. PubMed ID: 38758755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.
    Eynde EV; Lenaerts B; Tytgat T; Blust R; Lenaerts S
    Environ Sci Technol; 2016 Mar; 50(5):2538-45. PubMed ID: 26838336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Augmented CO
    Choi HI; Hwang SW; Kim J; Park B; Jin E; Choi IG; Sim SJ
    Nat Commun; 2021 Oct; 12(1):6049. PubMed ID: 34663809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive approach to improving life-cycle CO
    Choi HI; Hwang SW; Sim SJ
    Bioresour Technol; 2019 Nov; 291():121879. PubMed ID: 31377048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy metabolism and intracellular pH regulation reveal different physiological acclimation mechanisms of Chlorella strains to high concentrations of CO
    Li J; Tang X; Pan K; Zhu B; Li Y; Wang Z; Zhao Y
    Sci Total Environ; 2022 Dec; 853():158627. PubMed ID: 36087671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of native freshwater microalgae and cyanobacteria for CO2 biofixation.
    Martínez L; Otero M; Morán A; García AI
    Environ Technol; 2013; 34(21-24):3137-43. PubMed ID: 24617072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.
    Sialve B; Bernet N; Bernard O
    Biotechnol Adv; 2009; 27(4):409-16. PubMed ID: 19289163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?
    Acién Fernández FG; González-López CV; Fernández Sevilla JM; Molina Grima E
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):577-86. PubMed ID: 22923096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilizing CO
    Comley JG; Scott JA; Laamanen CA
    Crit Rev Biotechnol; 2024 Aug; 44(5):910-923. PubMed ID: 37500178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological imperatives for aquatic CO2-concentrating mechanisms.
    Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3797-3814. PubMed ID: 28645178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.
    Ferreira AF; Ortigueira J; Alves L; Gouveia L; Moura P; Silva C
    Bioresour Technol; 2013 Sep; 144():156-64. PubMed ID: 23867534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.