These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23801125)

  • 41. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle.
    da Rosa GM; Moraes L; Cardias BB; de Souza Mda R; Costa JA
    Bioresour Technol; 2015 Sep; 192():321-7. PubMed ID: 26051496
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perspectives on microalgal CO₂-emission mitigation systems--a review.
    Ho SH; Chen CY; Lee DJ; Chang JS
    Biotechnol Adv; 2011; 29(2):189-98. PubMed ID: 21094248
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.
    Anjos M; Fernandes BD; Vicente AA; Teixeira JA; Dragone G
    Bioresour Technol; 2013 Jul; 139():149-54. PubMed ID: 23648764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave pyrolysis of microalgae for high syngas production.
    Beneroso D; Bermúdez JM; Arenillas A; Menéndez JA
    Bioresour Technol; 2013 Sep; 144():240-6. PubMed ID: 23871926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation.
    Yoo C; La HJ; Kim SC; Oh HM
    Biotechnol Bioeng; 2015 Feb; 112(2):288-96. PubMed ID: 25182602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT.
    Li XK; Xu JL; Guo Y; Zhou WZ; Yuan ZH
    Bioresour Technol; 2015 Aug; 190():339-44. PubMed ID: 25965950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acclimation-driven microalgal cultivation improved temperature and light stress tolerance, CO
    Singh Chauhan D; Sahoo L; Mohanty K
    Bioresour Technol; 2023 Oct; 385():129386. PubMed ID: 37364652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology.
    Canon-Rubio KA; Sharp CE; Bergerson J; Strous M; De la Hoz Siegler H
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1611-1622. PubMed ID: 26691517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxygen transfer and evolution in microalgal culture in open raceways.
    Mendoza JL; Granados MR; de Godos I; Acién FG; Molina E; Heaven S; Banks CJ
    Bioresour Technol; 2013 Jun; 137():188-95. PubMed ID: 23587819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH.
    Desjardins SM; Laamanen CA; Basiliko N; Scott JA
    Extremophiles; 2021 Mar; 25(2):129-141. PubMed ID: 33475805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using carbon dioxide to maintain an elevated oleaginous microalga concentration in mixed-culture photo-bioreactors.
    Giannetto MJ; Retotar A; Rismani-Yazdi H; Peccia J
    Bioresour Technol; 2015 Jun; 185():178-84. PubMed ID: 25768421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A biorefinery from Nannochloropsis sp. microalga - energy and CO2 emission and economic analyses.
    Ferreira AF; Ribeiro LA; Batista AP; Marques PA; Nobre BP; Palavra AM; da Silva PP; Gouveia L; Silva C
    Bioresour Technol; 2013 Jun; 138():235-44. PubMed ID: 23619136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bicarbonate produced from carbon capture for algae culture.
    Chi Z; O'Fallon JV; Chen S
    Trends Biotechnol; 2011 Nov; 29(11):537-41. PubMed ID: 21775005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology.
    Khozin-Goldberg I; Iskandarov U; Cohen Z
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):905-15. PubMed ID: 21720821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2.
    Paudel A; Jessop MJ; Stubbins SH; Champagne P; Jessop PG
    Bioresour Technol; 2015 May; 184():286-290. PubMed ID: 25537138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growth of microalgae in high CO2 gas and effects of SOX and NOX.
    Negoro M; Shioji N; Miyamoto K; Miura Y
    Appl Biochem Biotechnol; 1991; 28-29():877-86. PubMed ID: 1929389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodiesel production with microalgae as feedstock: from strains to biodiesel.
    Gong Y; Jiang M
    Biotechnol Lett; 2011 Jul; 33(7):1269-84. PubMed ID: 21380528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production.
    Ríos SD; Castañeda J; Torras C; Farriol X; Salvadó J
    Bioresour Technol; 2013 Apr; 133():378-88. PubMed ID: 23434816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A warm welcome for alternative CO
    Claassens NJ
    Microb Biotechnol; 2017 Jan; 10(1):31-34. PubMed ID: 27873465
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.