These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 23801586)
1. Engineering a recyclable elastin-like polypeptide capturing scaffold for non-chromatographic protein purification. Liu F; Chen W Biotechnol Prog; 2013; 29(4):968-71. PubMed ID: 23801586 [TBL] [Abstract][Full Text] [Related]
2. Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. Liu F; Tsai SL; Madan B; Chen W Biotechnol Bioeng; 2012 Nov; 109(11):2829-35. PubMed ID: 22566125 [TBL] [Abstract][Full Text] [Related]
3. Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. Craig SJ; Foong FC; Nordon R J Biotechnol; 2006 Jan; 121(2):165-73. PubMed ID: 16111782 [TBL] [Abstract][Full Text] [Related]
4. Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction. Karpol A; Kantorovich L; Demishtein A; Barak Y; Morag E; Lamed R; Bayer EA J Mol Recognit; 2009; 22(2):91-8. PubMed ID: 18979459 [TBL] [Abstract][Full Text] [Related]
5. Protein purification by fusion with an environmentally responsive elastin-like polypeptide: effect of polypeptide length on the purification of thioredoxin. Meyer DE; Trabbic-Carlson K; Chilkoti A Biotechnol Prog; 2001; 17(4):720-8. PubMed ID: 11485434 [TBL] [Abstract][Full Text] [Related]
6. A dual ELP-tagged split intein system for non-chromatographic recombinant protein purification. Shi C; Meng Q; Wood DW Appl Microbiol Biotechnol; 2013 Jan; 97(2):829-35. PubMed ID: 23212673 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. Demishtein A; Karpol A; Barak Y; Lamed R; Bayer EA J Mol Recognit; 2010; 23(6):525-35. PubMed ID: 21038354 [TBL] [Abstract][Full Text] [Related]
8. The Dock tag, an affinity tool for the purification of recombinant proteins, based on the interaction between dockerin and cohesin domains from Clostridium josui cellulosome. Kamezaki Y; Enomoto C; Ishikawa Y; Koyama T; Naya S; Suzuki T; Sakka K Protein Expr Purif; 2010 Mar; 70(1):23-31. PubMed ID: 19836451 [TBL] [Abstract][Full Text] [Related]
9. Optimization of ELP-intein mediated protein purification by salt substitution. Fong BA; Wu WY; Wood DW Protein Expr Purif; 2009 Aug; 66(2):198-202. PubMed ID: 19345265 [TBL] [Abstract][Full Text] [Related]
10. Single-step purification of recombinant proteins using elastin-like peptide-mediated inverse transition cycling and self-processing module from Neisseria meningitides FrpC. Liu WJ; Wu Q; Xu B; Zhang XY; Xia XL; Sun HC Protein Expr Purif; 2014 Jun; 98():18-24. PubMed ID: 24607361 [TBL] [Abstract][Full Text] [Related]
11. Recombinant protein purification by self-cleaving aggregation tag. Wu WY; Mee C; Califano F; Banki R; Wood DW Nat Protoc; 2006; 1(5):2257-62. PubMed ID: 17406465 [TBL] [Abstract][Full Text] [Related]
12. Split intein mediated ultra-rapid purification of tagless protein (SIRP). Guan D; Ramirez M; Chen Z Biotechnol Bioeng; 2013 Sep; 110(9):2471-81. PubMed ID: 23568256 [TBL] [Abstract][Full Text] [Related]
14. Self-cleavable stimulus responsive tags for protein purification without chromatography. Ge X; Yang DS; Trabbic-Carlson K; Kim B; Chilkoti A; Filipe CD J Am Chem Soc; 2005 Aug; 127(32):11228-9. PubMed ID: 16089436 [TBL] [Abstract][Full Text] [Related]
15. ELP-z and ELP-zz capturing scaffolds for the purification of immunoglobulins by affinity precipitation. Madan B; Chaudhary G; Cramer SM; Chen W J Biotechnol; 2013 Jan; 163(1):10-6. PubMed ID: 23089730 [TBL] [Abstract][Full Text] [Related]
16. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System. Shi C; Han TC; Wood DW Methods Mol Biol; 2017; 1495():13-25. PubMed ID: 27714607 [TBL] [Abstract][Full Text] [Related]
17. [De novo design, non-chromatographic purification and salt-effect of elastin-like polypeptides]. Huang K; Li J; Li W; Ge H; Wang W; Zhang G Sheng Wu Gong Cheng Xue Bao; 2011 Apr; 27(4):653-8. PubMed ID: 21848002 [TBL] [Abstract][Full Text] [Related]
18. High-yield recombinant expression and purification of marginally soluble, short elastin-like polypeptides. Bahniuk MS; Alshememry AK; Unsworth LD Biotechniques; 2016 Dec; 61(6):297-304. PubMed ID: 27938321 [TBL] [Abstract][Full Text] [Related]
19. Expression and purification of an ArsM-elastin-like polypeptide fusion and its enzymatic properties. Ke C; Xiong H; Zhao C; Zhang Z; Zhao X; Rensing C; Zhang G; Yang S Appl Microbiol Biotechnol; 2019 Mar; 103(6):2809-2820. PubMed ID: 30666362 [TBL] [Abstract][Full Text] [Related]
20. Designing an ELP-intein system: toward a more realistic outlook. Ranjbar S; Rahbarizadeh F; Ahmadvand D Prep Biochem Biotechnol; 2019; 49(3):222-229. PubMed ID: 30806151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]