These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23801637)

  • 1. Electrochemical properties of yolk-shell, hollow, and dense WO3 particles prepared by using spray pyrolysis.
    Sim CM; Hong YJ; Kang YC
    ChemSusChem; 2013 Aug; 6(8):1320-5. PubMed ID: 23801637
    [No Abstract]   [Full Text] [Related]  

  • 2. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis.
    Choi SH; Hong YJ; Kang YC
    Nanoscale; 2013 Sep; 5(17):7867-71. PubMed ID: 23846530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Li4Ti5O12 yolk-shell powders by spray pyrolysis and their electrochemical properties.
    Yang KM; Ko YN; Yun JY; Kang YC
    Chem Asian J; 2014 Feb; 9(2):443-6. PubMed ID: 24282098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical properties of yolk-shell-structured CuO-Fe(2)O(3) powders with various Cu/Fe molar ratios prepared by one-pot spray pyrolysis.
    Yang KM; Hong YJ; Kang YC
    ChemSusChem; 2013 Dec; 6(12):2299-303. PubMed ID: 24106078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties.
    Choi SH; Kang YC
    Chemistry; 2014 Mar; 20(11):3014-8. PubMed ID: 24532417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(19):5835-9. PubMed ID: 24665070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability.
    Hong YJ; Kang YC
    Small; 2015 May; 11(18):2157-63. PubMed ID: 25565252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable synthesis of yolk-shell-structured metal oxides with seven to ten components for finding materials with superior lithium storage properties.
    Choi SH; Lee JK; Kang YC
    Nanoscale; 2014 Nov; 6(21):12421-5. PubMed ID: 25238055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior electrochemical properties of LiMn2O4 yolk-shell powders prepared by a simple spray pyrolysis process.
    Sim CM; Choi SH; Kang YC
    Chem Commun (Camb); 2013 Jul; 49(53):5978-80. PubMed ID: 23714849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excellent electrochemical properties of yolk-shell MoO₃ microspheres formed by combustion of molybdenum oxide-carbon composite microspheres.
    Ko YN; Park SB; Kang YC
    Chem Asian J; 2014 Apr; 9(4):1011-5. PubMed ID: 24519906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior electrochemical properties of Co3O4 yolk-shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis.
    Son MY; Hong YJ; Kang YC
    Chem Commun (Camb); 2013 Jun; 49(50):5678-80. PubMed ID: 23682355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast synthesis of yolk-shell and cubic NiO Nanopowders and application in lithium ion batteries.
    Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2312-6. PubMed ID: 24490667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yolk-shell structured Gd2O3:Eu(3+) phosphor prepared by spray pyrolysis: the effect of preparation conditions on microstructure and luminescence properties.
    Cho JS; Jung KY; Kang YC
    Phys Chem Chem Phys; 2015 Jan; 17(2):1325-31. PubMed ID: 25424414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration.
    Ko YN; Kang YC; Park SB
    Nanoscale; 2014 May; 6(9):4508-12. PubMed ID: 24652333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing.
    Zhang X; Huo K; Peng X; Xu R; Li P; Chen R; Zheng G; Wu Z; Chu PK
    Chem Commun (Camb); 2013 Aug; 49(63):7091-3. PubMed ID: 23770651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery.
    Won JM; Choi SH; Hong YJ; Ko YN; Kang YC
    Sci Rep; 2014 Aug; 4():5857. PubMed ID: 25168407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.
    Zhu T; Chong MN; Chan ES
    ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.