BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23801647)

  • 1. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics.
    Kush P; Ujjain SK; Mehra NC; Jha P; Sharma RK; Deka S
    Chemphyschem; 2013 Aug; 14(12):2793-9. PubMed ID: 23801647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells.
    Mali SS; Patil PS; Hong CK
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1688-96. PubMed ID: 24383575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral optical properties of Cu2ZnSnS4 thin film between 0.73 and 6.5 eV.
    Li J; Du H; Yarbrough J; Norman A; Jones K; Teeter G; Terry FL; Levi D
    Opt Express; 2012 Mar; 20 Suppl 2():A327-32. PubMed ID: 22418682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.
    Jin C; Ramasamy P; Kim J
    Dalton Trans; 2014 Jul; 43(25):9481-5. PubMed ID: 24823944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application.
    Camara SM; Wang L; Zhang X
    Nanotechnology; 2013 Dec; 24(49):495401. PubMed ID: 24231683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-based synthesis of wurtzite Cu2ZnSnS4 nanoleaves introduced by α-Cu2S nanocrystals as a catalyst.
    Zhang W; Zhai L; He N; Zou C; Geng X; Cheng L; Dong Y; Huang S
    Nanoscale; 2013 Sep; 5(17):8114-21. PubMed ID: 23884477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu
    Sava F; Diagne O; Galca AC; Simandan ID; Matei E; Burdusel M; Becherescu N; Becherescu V; Mihai C; Velea A
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Two-Step Magnetron Sputtering Approach for the Synthesis of Cu
    Zaki MY; Sava F; Simandan ID; Buruiana AT; Stavarache I; Bocirnea AE; Mihai C; Velea A; Galca AC
    ACS Omega; 2022 Jul; 7(27):23800-23814. PubMed ID: 35847258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles.
    Xia Y; Chen Z; Zhang Z; Fang X; Liang G
    Nanoscale Res Lett; 2014; 9(1):208. PubMed ID: 24855463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu
    Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and photoluminescence of lanthanum hydroxide nanorods by a simple route at room temperature.
    Mu Q; Chen T; Wang Y
    Nanotechnology; 2009 Aug; 20(34):345602. PubMed ID: 19652269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Hydrothermal Synthesis of Cu
    Henríquez R; Nogales PS; Moreno PG; Cartagena EM; Bongiorno PL; Navarrete-Astorga E; Dalchiele EA
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wet Chemically Synthesized CuO Bipods and their Optical Properties.
    Samanta PK; Saha A; Kamilya T
    Recent Pat Nanotechnol; 2016; 10(1):20-5. PubMed ID: 27018270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2009 Sep; 131(34):12054-5. PubMed ID: 19673478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions.
    Park J; Song M; Jung WM; Lee WY; Kim H; Kim Y; Hwang C; Shim IW
    Dalton Trans; 2013 Aug; 42(29):10545-50. PubMed ID: 23759949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route.
    Mirbagheri N; Engberg S; Crovetto A; Simonsen SB; Hansen O; Lam YM; Schou J
    Nanotechnology; 2016 May; 27(18):185603. PubMed ID: 27005863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties.
    Li Q; Zhai L; Zou C; Huang X; Zhang L; Yang Y; Chen X; Huang S
    Nanoscale; 2013 Feb; 5(4):1638-48. PubMed ID: 23334175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor.
    Shavel A; Cadavid D; Ibáñez M; Carrete A; Cabot A
    J Am Chem Soc; 2012 Jan; 134(3):1438-41. PubMed ID: 22211575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells.
    Arul NS; Yun DY; Lee DU; Kim TW
    Nanoscale; 2013 Dec; 5(23):11940-3. PubMed ID: 24129972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.