BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23801672)

  • 1. Direct cellular reprogramming in Caenorhabditis elegans: facts, models, and promises for regenerative medicine.
    Zuryn S; Daniele T; Jarriault S
    Wiley Interdiscip Rev Dev Biol; 2012; 1(1):138-52. PubMed ID: 23801672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell plasticity in Caenorhabditis elegans: from induced to natural cell reprogramming.
    Hajduskova M; Ahier A; Daniele T; Jarriault S
    Genesis; 2012 Jan; 50(1):1-17. PubMed ID: 21932439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural and induced direct reprogramming: mechanisms, concepts and general principles-from the worm to vertebrates.
    Becker SF; Jarriault S
    Curr Opin Genet Dev; 2016 Oct; 40():154-163. PubMed ID: 27690213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming and transdifferentiation shift the landscape of regenerative medicine.
    Guo J; Wang H; Hu X
    DNA Cell Biol; 2013 Oct; 32(10):565-72. PubMed ID: 23930590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs.
    Spickard EA; Joshi PM; Rothman JH
    FEBS Lett; 2018 Mar; 592(6):838-851. PubMed ID: 29334121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FACT Sets a Barrier for Cell Fate Reprogramming in Caenorhabditis elegans and Human Cells.
    Kolundzic E; Ofenbauer A; Bulut SI; Uyar B; Baytek G; Sommermeier A; Seelk S; He M; Hirsekorn A; Vucicevic D; Akalin A; Diecke S; Lacadie SA; Tursun B
    Dev Cell; 2018 Sep; 46(5):611-626.e12. PubMed ID: 30078731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct in vivo cellular reprogramming involves transition through discrete, non-pluripotent steps.
    Richard JP; Zuryn S; Fischer N; Pavet V; Vaucamps N; Jarriault S
    Development; 2011 Apr; 138(8):1483-92. PubMed ID: 21389048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine.
    Pesaresi M; Sebastian-Perez R; Cosma MP
    FEBS J; 2019 Mar; 286(6):1074-1093. PubMed ID: 30103260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for in vivo reprogramming.
    Ofenbauer A; Tursun B
    Curr Opin Cell Biol; 2019 Dec; 61():9-15. PubMed ID: 31323468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-fusion-mediated reprogramming: pluripotency or transdifferentiation? Implications for regenerative medicine.
    Sanges D; Lluis F; Cosma MP
    Adv Exp Med Biol; 2011; 713():137-59. PubMed ID: 21432018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics?
    de Lázaro I; Yilmazer A; Kostarelos K
    J Control Release; 2014 Jul; 185():37-44. PubMed ID: 24746625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion.
    Ebrahimi B
    Tissue Cell; 2016 Oct; 48(5):475-87. PubMed ID: 27514850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine.
    Eguizabal C; Montserrat N; Veiga A; Izpisua Belmonte JC
    Semin Reprod Med; 2013 Jan; 31(1):82-94. PubMed ID: 23329641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reprogramming of somatic cells. Problems and solutions].
    Schneider TA; Fishman VS; Liskovykh MA; Ponamartsev SV; Serov OL; Tomilin AN; Alenina N
    Tsitologiia; 2014; 56(12):869-80. PubMed ID: 25929128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.
    Yamakawa H; Ieda M
    Int Heart J; 2015; 56(1):1-5. PubMed ID: 25742939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in cell lineage reprogramming.
    Zhou J; Yue W; Pei X
    Sci China Life Sci; 2013 Mar; 56(3):228-33. PubMed ID: 23526388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical transdifferentiation: closer to regenerative medicine.
    Xu A; Cheng L
    Front Med; 2016 Jun; 10(2):152-65. PubMed ID: 27142989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatic cell reprogramming for regenerative medicine: SCNT vs. iPS cells.
    Pan G; Wang T; Yao H; Pei D
    Bioessays; 2012 Jun; 34(6):472-6. PubMed ID: 22419173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Induction: Induced Pluripotent Stem Cells (iPSCs).
    Singh VK; Kumar N; Kalsan M; Saini A; Chandra R
    J Stem Cells; 2015; 10(1):43-62. PubMed ID: 26665937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies.
    Chua SJ; Casper RF; Rogers IM
    Cell Reprogram; 2011 Aug; 13(4):273-80. PubMed ID: 21599518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.