These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23802134)

  • 1. Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74.
    Zheng YT; Toyofuku M; Nomura N; Shigeto S
    Anal Chem; 2013 Aug; 85(15):7295-301. PubMed ID: 23802134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber.
    Sivan A; Szanto M; Pavlov V
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):346-52. PubMed ID: 16534612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.
    Gilan I; Sivan A
    FEMS Microbiol Lett; 2013 May; 342(1):18-23. PubMed ID: 23448092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber.
    Orr IG; Hadar Y; Sivan A
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):97-104. PubMed ID: 15221232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene.
    Mor R; Sivan A
    Biodegradation; 2008 Nov; 19(6):851-8. PubMed ID: 18401686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilms.
    Horiue H; Sasaki M; Yoshikawa Y; Toyofuku M; Shigeto S
    Sci Rep; 2020 May; 10(1):7704. PubMed ID: 32382042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids.
    Weathers TS; Higgins CP; Sharp JO
    Environ Sci Technol; 2015 May; 49(9):5458-66. PubMed ID: 25806435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Based Insights into the Production of Carotenoids by Antarctic Bacteria,
    Styczynski M; Rogowska A; Gieczewska K; Garstka M; Szakiel A; Dziewit L
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32977394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1.
    Yoshida S; Ogawa N; Fujii T; Tsushima S
    J Appl Microbiol; 2009 Mar; 106(3):790-800. PubMed ID: 19191976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants.
    Schreiberová O; Hedbávná P; Cejková A; Jirků V; Masák J
    N Biotechnol; 2012 Nov; 30(1):62-8. PubMed ID: 22569140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotenoids production and genome analysis of a novel carotenoid producing Rhodococcus aetherivorans N1.
    Jiang W; Sun J; Gao H; Tang Y; Wang C; Jiang Y; Zhang W; Xin F; Jiang M
    Enzyme Microb Technol; 2023 Mar; 164():110190. PubMed ID: 36603321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Monosaccharide and fatty acid composition of exopolymer complex of bacteria-destructors of the protective coating of gas pipeline].
    Kopteva ZhP; Zanina VV; Boretskaia MA; Iumyna IuM; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2012; 74(2):22-8. PubMed ID: 22686014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planktonic cell yield is linked to biofilm development.
    Bester E; Edwards EA; Wolfaardt GM
    Can J Microbiol; 2009 Oct; 55(10):1195-206. PubMed ID: 19935892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.
    Alem MA; Oteef MD; Flowers TH; Douglas LJ
    Eukaryot Cell; 2006 Oct; 5(10):1770-9. PubMed ID: 16980403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater.
    Lee H; Choi E; Yun Z; Park YK
    J Microbiol Biotechnol; 2008 Aug; 18(8):1459-69. PubMed ID: 18756109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.
    Simões LC; Simões M; Vieira MJ
    Antonie Van Leeuwenhoek; 2010 Oct; 98(3):317-29. PubMed ID: 20405208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria.
    Roslev P; Larsen MB; Jørgensen D; Hesselsoe M
    J Microbiol Methods; 2004 Dec; 59(3):381-93. PubMed ID: 15488281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a novel carotenoid, OH-chlorobactene glucoside hexadecanoate, and related rare carotenoids from Rhodococcus sp. CIP and their antioxidative activities.
    Osawa A; Kasahara A; Mastuoka S; Gassel S; Sandmann G; Shindo K
    Biosci Biotechnol Biochem; 2011; 75(11):2142-7. PubMed ID: 22056433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm formation as microbial development.
    O'Toole G; Kaplan HB; Kolter R
    Annu Rev Microbiol; 2000; 54():49-79. PubMed ID: 11018124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.