These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 23802224)

  • 1. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces.
    Kaghazchi P; Jacob T; Chen W; Bartynski RA
    Phys Chem Chem Phys; 2013 Aug; 15(31):12815-20. PubMed ID: 23802224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure sensitivity in the oxidation of CO on Ir surfaces.
    Chen W; Ermanoski I; Jacob T; Madey TE
    Langmuir; 2006 Mar; 22(7):3166-73. PubMed ID: 16548573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of CO by NO on planar and faceted Ir(210).
    Chen W; Bartynski RA; Kaghazchi P; Jacob T
    J Chem Phys; 2012 Jun; 136(22):224701. PubMed ID: 22713063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of NO by CO on unsupported Ir: bridging the materials gap.
    Chen W; Shen Q; Bartynski RA; Kaghazchi P; Jacob T
    Chemphyschem; 2010 Aug; 11(12):2515-20. PubMed ID: 20635373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study.
    Gudmundsdóttir S; Skúlason E; Weststrate KJ; Juurlink L; Jónsson H
    Phys Chem Chem Phys; 2013 May; 15(17):6323-32. PubMed ID: 23518690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of nitric oxide by acetylene on Ir surfaces with different morphologies: comparison with reduction of NO by CO.
    Chen W; Shen Q; Bartynski RA; Kaghazchi P; Jacob T
    Langmuir; 2013 Jan; 29(4):1113-21. PubMed ID: 23273167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles studies on oxygen-induced faceting of Ir(210).
    Kaghazchi P; Jacob T; Ermanoski I; Chen W; Madey TE
    ACS Nano; 2008 Jun; 2(6):1280-8. PubMed ID: 19206346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of ammonia and hydrogen on Ir surfaces: structure sensitivity and nanometer-scale size effects.
    Chen W; Ermanoski I; Madey TE
    J Am Chem Soc; 2005 Apr; 127(14):5014-5. PubMed ID: 15810824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of temperature-programmed desorption of high-coverage hydrogen on Pt(211), Pt(221), Pt(533) and Pt(553) based on density functional theory calculations.
    Kolb MJ; Garden AL; Badan C; Garrido Torres JA; Skúlason E; Juurlink LBF; Jónsson H; Koper MTM
    Phys Chem Chem Phys; 2019 Aug; 21(31):17142-17151. PubMed ID: 31339149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption/desorption of H2 and CO on Zn-modified Pd(111).
    Tamtögl A; Kratzer M; Killman J; Winkler A
    J Chem Phys; 2008 Dec; 129(22):224706. PubMed ID: 19071938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of seven molybdenum surfaces and their coverage dependent hydrogen adsorption.
    Wang T; Tian X; Yang Y; Li YW; Wang J; Beller M; Jiao H
    Phys Chem Chem Phys; 2016 Feb; 18(8):6005-12. PubMed ID: 26838012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio molecular dynamics simulations of the adsorption of H2 on palladium surfaces.
    Gross A
    Chemphyschem; 2010 May; 11(7):1374-81. PubMed ID: 20099293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of hydrogen on the surface and sub-surface of Cu(111).
    Mudiyanselage K; Yang Y; Hoffmann FM; Furlong OJ; Hrbek J; White MG; Liu P; Stacchiola DJ
    J Chem Phys; 2013 Jul; 139(4):044712. PubMed ID: 23902008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of ammonia on stoichiometric and reduced TiO(2)(001) single crystal surfaces.
    Wilson JN; Idriss H
    Langmuir; 2004 Dec; 20(25):10956-61. PubMed ID: 15568846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and dissociation of NO on Ir(100): a first-principles study.
    He CZ; Wang H; Zhu P; Liu JY
    J Chem Phys; 2011 Nov; 135(20):204707. PubMed ID: 22128952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cluster Ir4 and its interaction with a hydrogen impurity. A density functional study.
    Bussai C; Krüger S; Vayssilov GN; Rösch N
    Phys Chem Chem Phys; 2005 Jul; 7(13):2656-63. PubMed ID: 16189577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the gap between nanoparticles and single crystal surfaces.
    Kaghazchi P; Simeone FC; Soliman KA; Kibler LA; Jacob T
    Faraday Discuss; 2008; 140():69-80; discussion 93-112. PubMed ID: 19213311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale surface chemistry.
    Madey TE; Pelhos K; Wu Q; Barnes R; Ermanoski I; Chen W; Kolodziej JJ; Rowe JE
    Proc Natl Acad Sci U S A; 2002 Apr; 99 Suppl 2(Suppl 2):6503-8. PubMed ID: 11904376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.