BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23802414)

  • 1. Narrow size distribution of microbubbles for enhancement of harmonic imaging.
    Moon H; Yu J; Park S; Chang JH; Song TK; Kim H
    J Biomed Nanotechnol; 2013 May; 9(5):845-8. PubMed ID: 23802414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound contrast agents: basic principles.
    Calliada F; Campani R; Bottinelli O; Bozzini A; Sommaruga MG
    Eur J Radiol; 1998 May; 27 Suppl 2():S157-60. PubMed ID: 9652516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles.
    Klibanov AL; Rasche PT; Hughes MS; Wojdyla JK; Galen KP; Wible JH; Brandenburger GH
    Invest Radiol; 2004 Mar; 39(3):187-95. PubMed ID: 15076011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent.
    Lin F; Tsuruta JK; Rojas JD; Dayton PA
    Ultrasound Med Biol; 2017 Oct; 43(10):2488-2493. PubMed ID: 28668636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.
    Ivory AM; Meaney JF; Fagan AJ; Browne JE
    Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and nonlinear characterization of microbubbles and tissue using the Nakagami statistical model.
    Bahbah N; Novell A; Bouakaz A; Djelouah H
    Ultrasonics; 2017 Apr; 76():200-207. PubMed ID: 28119148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image enhancement by acoustic conditioning of ultrasound contrast agents.
    Shi WT; Forsberg F; Bautista R; Vecchio C; Bernardi R; Goldberg BB
    Ultrasound Med Biol; 2004 Feb; 30(2):191-8. PubMed ID: 14998671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Microbubble Echo Phase Lag in Multipulse Contrast-Enhanced Ultrasound Imaging.
    Tremblay-Darveau C; Sheeran PS; Vu CK; Williams R; Zhang Z; Bruce M; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1389-1401. PubMed ID: 29993575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice.
    Sirsi S; Feshitan J; Kwan J; Homma S; Borden M
    Ultrasound Med Biol; 2010 Jun; 36(6):935-48. PubMed ID: 20447755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting and ultrasound imaging of microbubble-based contrast agents.
    Klibanov AL; Hughes MS; Villanueva FS; Jankowski RJ; Wagner WR; Wojdyla JK; Wible JH; Brandenburger GH
    MAGMA; 1999 Aug; 8(3):177-84. PubMed ID: 10504045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-frequency tissue harmonic suppression using phase-coded pulse sequence: proof of concept using a phantom.
    Shen CC; Wang HT
    Ultrasonics; 2013 Mar; 53(3):717-26. PubMed ID: 23218909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of acoustic scattering from dual-frequency driven microbubbles at the difference frequency.
    Wyczalkowski M; Szeri AJ
    J Acoust Soc Am; 2003 Jun; 113(6):3073-9. PubMed ID: 12822779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting backscatter characteristics from micron- and submicron-scale ultrasound contrast agents using a size-integration technique.
    Zheng H; Barker A; Shandas R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):639-44. PubMed ID: 16555773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-frequency excitation technique for enhancing the sub-harmonic emission from encapsulated microbubbles.
    Zhang D; Xi X; Zhang Z; Gong X; Chen G; Wu J
    Phys Med Biol; 2009 Jul; 54(13):4257-72. PubMed ID: 19531846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time excitation-enhanced ultrasound contrast imaging.
    Forsberg F; Shi WT; Knauer MK; Hall AL; Vecchio C; Bernardi R
    Ultrason Imaging; 2005 Apr; 27(2):65-74. PubMed ID: 16231836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.
    Li H; Yang Y; Zhang M; Yin L; Tu J; Guo X; Zhang D
    J Ultrasound Med; 2018 May; 37(5):1243-1256. PubMed ID: 29127707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Ultrasound Contrast Agents for the Enhancement of Tumor Diagnosis and Tumor Therapy.
    Moon H; Yoon C; Lee TW; Ha KS; Chang JH; Song TK; Kim K; Kim H
    J Biomed Nanotechnol; 2015 Jul; 11(7):1183-92. PubMed ID: 26307841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbubble: a potential ultrasound tool in molecular imaging.
    Patel RM
    Curr Pharm Biotechnol; 2008 Oct; 9(5):406-10. PubMed ID: 18855694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbubble Void Imaging: A Non-invasive Technique for Flow Visualisation and Quantification of Mixing in Large Vessels Using Plane Wave Ultrasound and Controlled Microbubble Contrast Agent Destruction.
    Leow CH; Iori F; Corbett R; Duncan N; Caro C; Vincent P; Tang MX
    Ultrasound Med Biol; 2015 Nov; 41(11):2926-37. PubMed ID: 26297515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.