These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 238025)
21. Differences in beta-adrenergic regulation of cyclic AMP formation in cerebral cortical slices of the rat and spiny mouse--Acomys cahirinus. Chalecka-Franaszek E; Nalepa I; Vetulani J Pol J Pharmacol Pharm; 1990; 42(1):29-38. PubMed ID: 1980732 [TBL] [Abstract][Full Text] [Related]
22. Fluoronorepinephrines: specific agonists for the activation of alpha and beta adrenergic-sensitive cyclic AMP-generating systems in brain slices. Daly JW; Padgett W; Nimitkitpaisan Y; Creveling CR; Cantacuzene D; Kirk KL J Pharmacol Exp Ther; 1980 Mar; 212(3):382-9. PubMed ID: 6102142 [No Abstract] [Full Text] [Related]
23. Interrelationship between catecholamine-stimulated formation of adenosine 3',5'-monophosphate in cerebellar slices and inhibitory effects on cerebellar Purkinje cells: antagonism by neuroleptic compounds. Skolnick P; Daly JW; Freedman R; Hoffer BJ J Pharmacol Exp Ther; 1976 May; 197(2):280-92. PubMed ID: 5595 [No Abstract] [Full Text] [Related]
24. Cyclic AMP-generating systems: regional differences in activation by adrenergic receptors in rat brain. Daly JW; Padgett W; Creveling CR; Cantacuzene D; Kirk KL J Neurosci; 1981 Jan; 1(1):49-59. PubMed ID: 6286893 [TBL] [Abstract][Full Text] [Related]
25. Augmentation and inhibition of beta-adrenergic agonists-stimulated tissue cyclic AMP accumulation by alpha-adrenergic agonists in rat parotid gland. Yoshimura K; Nezu E; Yoneyama T; Hiramatsu Y Jpn J Physiol; 1987; 37(5):881-97. PubMed ID: 2896805 [TBL] [Abstract][Full Text] [Related]
26. Alpah-adrenergic receptor modulation of beta-adrenergic, adenosine and prostaglandin E1 increased adenosine 3':5'-cyclic monophosphate levels in primary cultures of glia. McCarthy KD; de Vellis J J Cyclic Nucleotide Res; 1978 Feb; 4(1):15-26. PubMed ID: 25289 [TBL] [Abstract][Full Text] [Related]
27. Effects of biogenic amines on the formation of adenosine 3', 5'-monophosphate in human thyroid slices. Sato A; Hashizume K; Onaya T; Miyakawa M; Makiuchi M Endocrinol Jpn; 1976 Aug; 23(4):319-25. PubMed ID: 191246 [TBL] [Abstract][Full Text] [Related]
28. Regulation and bioelectrical effects of cyclic adenosine monophosphate production in the ciliary epithelial bilayer. Horio B; Sears M; Mead A; Matsui H; Bausher L Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):607-12. PubMed ID: 8595960 [TBL] [Abstract][Full Text] [Related]
29. Alpha adrenergic and cholinergic-muscarinic regulation of adenosine cyclic 3',5'-monophosphate levels in the rat parotid. Oron Y; Kellogg J; Larner J Mol Pharmacol; 1978 Nov; 14(6):1018-30. PubMed ID: 32474 [No Abstract] [Full Text] [Related]
30. Comparison of signal transduction mechanisms of alpha-2C and alpha-1A adrenergic receptor-stimulated prostaglandin synthesis. Nebigil C; Malik KU J Pharmacol Exp Ther; 1992 Dec; 263(3):987-96. PubMed ID: 1335071 [TBL] [Abstract][Full Text] [Related]
32. Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. Wolfe BB; Harden TK; Sporn JR; Molinoff PB J Pharmacol Exp Ther; 1978 Nov; 207(2):446-57. PubMed ID: 213556 [TBL] [Abstract][Full Text] [Related]
33. Chronic thyroxine treatment of rats down-regulates the noradrenergic cyclic AMP generating system in cerebral cortex. Schmidt BH; Schultz JE J Pharmacol Exp Ther; 1985 May; 233(2):466-72. PubMed ID: 2987486 [TBL] [Abstract][Full Text] [Related]
34. Strain differences in responsiveness of norepinephrine-sensitive adenosine 3',5'-monophosphate-generating systems in rat brain slices after intraventricular administration of 6-hydroxydopamine. Skolnick P; Daly JW Eur J Pharmacol; 1977 Jan; 41(2):145-52. PubMed ID: 188662 [TBL] [Abstract][Full Text] [Related]
35. Histamine-and isoprenaline-evoked stimulation of cAMP formation in chick cerebral cortex. Nowak JZ; Zawilska JB Pol J Pharmacol; 1995; 47(6):541-4. PubMed ID: 8868378 [TBL] [Abstract][Full Text] [Related]
36. Adenosine selectively attenuates H2- and beta-mediated cardiac responses to histamine and norepinephrine: an unmasking of H1- and alpha-mediated responses. Hattori Y; Levi R J Pharmacol Exp Ther; 1984 Nov; 231(2):215-23. PubMed ID: 6092608 [TBL] [Abstract][Full Text] [Related]
37. Alpha 1D L-type Ca(2+)-channel currents: inhibition by a beta-adrenergic agonist and pituitary adenylate cyclase-activating polypeptide (PACAP) in rat pinealocytes. Chik CL; Liu QY; Li B; Klein DC; Zylka M; Kim DS; Chin H; Karpinski E; Ho AK J Neurochem; 1997 Mar; 68(3):1078-87. PubMed ID: 9048753 [TBL] [Abstract][Full Text] [Related]
38. Beta-2 adrenergic control of ornithine decarboxylase activity in brain regions of the developing rat. Morris G; Slotkin TA J Pharmacol Exp Ther; 1985 Apr; 233(1):141-7. PubMed ID: 2858576 [TBL] [Abstract][Full Text] [Related]
39. Mediation of norepinephrine-stimulated cyclic AMP accumulation by adrenergic receptors in hypothalamic and preoptic area slices: effects of estradiol. Etgen AM; Petitti N J Neurochem; 1987 Dec; 49(6):1732-9. PubMed ID: 2445916 [TBL] [Abstract][Full Text] [Related]
40. Noradrenaline-sensitive cyclic AMP-generating system of rat cerebral cortex with iron-induced epileptiform activity. Hattori Y; Moriwaki A; Yasuhara H; Hori Y Jpn J Physiol; 1987; 37(1):161-7. PubMed ID: 2886687 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]