BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2380252)

  • 1. Effects of hyperthermia on the membrane potential and Na+ transport of V79 fibroblasts.
    Mikkelsen RB; Asher CR
    J Cell Physiol; 1990 Aug; 144(2):216-21. PubMed ID: 2380252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-induced changes in intracellular sodium and membrane potential: lack of a role in cell killing and thermotolerance.
    Amorino GP; Fox MH
    Radiat Res; 1996 Sep; 146(3):283-92. PubMed ID: 8752306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of medium amino acids on ouabain-sensitive 86Rb+ -uptake and membrane-potential dependent [3H]tetraphenylphosphonium accumulation in Friend erythroleukemia cells.
    Schaefer A; Munter KH; Rüller S
    Eur J Cell Biol; 1988 Aug; 46(3):453-7. PubMed ID: 3181165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature and ouabain on th Na+--K+ activated membrane ATPase and electrogenic ionic pump of the golden hamster and mouse diaphragm.
    Dlouhá H; Donselaar Y; Teisinger J; Vyskocil F
    Physiol Bohemoslov; 1980; 29(6):543-52. PubMed ID: 6259677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of muscle growth in vitro to sodium pump activity and transmembrane potential.
    Vandenburgh HH; Lent CM
    J Cell Physiol; 1984 Jun; 119(3):283-95. PubMed ID: 6327731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thermal adaptation at 40 degrees C on membrane viscosity and the sodium-potassium pump in Chinese hamster ovary cells.
    Bates DA; Le Grimellec C; Bates JH; Loutfi A; Mackillop WJ
    Cancer Res; 1985 Oct; 45(10):4895-9. PubMed ID: 4027976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hyperthermia on the sodium-potassium pump in Chinese hamster ovary cells.
    Bates DA; Mackillop WJ
    Radiat Res; 1985 Sep; 103(3):441-51. PubMed ID: 2412257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitivity of the membrane potential of normal and simian virus 40-transformed hamster lymphocytes.
    Mikkelsen RB; Koch B
    Cancer Res; 1981 Jan; 41(1):209-15. PubMed ID: 6256060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hyperthermia on transmembrane potential in Chinese hamster ovary cells in vitro.
    Quirt CF; Mackillop WJ
    Radiat Res; 1991 Apr; 126(1):96-103. PubMed ID: 2020742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium transport in rat renal papillary collecting tubule cells in culture.
    Konieczkowski M; Dunn MJ
    J Cell Physiol; 1988 May; 135(2):235-43. PubMed ID: 3372595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons.
    Taglialatela M; Canzoniero LM; Cragoe EJ; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):393-400. PubMed ID: 2402228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells.
    Boonstra J; Schamhart DH; de Laat SW; van Wijk R
    Cancer Res; 1984 Mar; 44(3):955-60. PubMed ID: 6318989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential and sodium flux in neuroblastoma X glioma hybrid cells: effects of amiloride and serum.
    O'Donnell ME; Villereal ML
    J Cell Physiol; 1982 Dec; 113(3):405-12. PubMed ID: 7174741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of an electrogenic Na+-K+ pump in mouse spleen macrophages.
    Gallin EK; Livengood DR
    Am J Physiol; 1983 Sep; 245(3):C184-8. PubMed ID: 6311022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early signals in serum-induced increases in ouabain-sensitive Na(+)-K+ pump activity and in glucose transport in rat skeletal muscle are amiloride-sensitive.
    Brodie C; Sampson SR
    J Neurochem; 1993 Jun; 60(6):2247-53. PubMed ID: 8388036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The independence of electrogenic sodium transport and membrane potential in a molluscan neurone.
    Marmor MF
    J Physiol; 1971 Nov; 218(3):599-608. PubMed ID: 5133950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic characterization of an ouabain-resistant, bumetanide-sensitive K+ carrier-mediated transport system in J774.2 mouse macrophage-like cell line and in variants deficient in adenylate cyclase and cAMP-dependent protein kinase activities.
    Bourrit A; Atlan H; Fromer I; Melmed RN; Lichtstein D
    Biochim Biophys Acta; 1985 Jul; 817(1):85-94. PubMed ID: 4005260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movements of labelled sodium ions in isolated rat superior cervical ganglia.
    Brown DA; Scholfield CN
    J Physiol; 1974 Oct; 242(2):321-51. PubMed ID: 4455816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Search for an electrogenic sodium pump in the liver.
    Lambotte L
    Arch Int Physiol Biochim; 1976 Apr; 84(2):353-5. PubMed ID: 71046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.