BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23802579)

  • 1. Effect of wind on the chemical uptake kinetics of a passive air sampler.
    Zhang X; Brown TN; Ansari A; Yeun B; Kitaoka K; Kondo A; Lei YD; Wania F
    Environ Sci Technol; 2013 Jul; 47(14):7868-75. PubMed ID: 23802579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sampler configuration on the uptake kinetics of a passive air sampler.
    Zhang X; Wong C; Lei YD; Wania F
    Environ Sci Technol; 2012 Jan; 46(1):397-403. PubMed ID: 22103289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.
    Tuduri L; Harner T; Hung H
    Environ Pollut; 2006 Nov; 144(2):377-83. PubMed ID: 16563580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sampling medium side resistance to uptake of semivolatile organic compounds in passive air samplers.
    Zhang X; Tsurukawa M; Nakano T; Lei YD; Wania F
    Environ Sci Technol; 2011 Dec; 45(24):10509-15. PubMed ID: 22047405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field Calibration of XAD-Based Passive Air Sampler on the Tibetan Plateau: Wind Influence and Configuration Improvement.
    Gong P; Wang X; Liu X; Wania F
    Environ Sci Technol; 2017 May; 51(10):5642-5649. PubMed ID: 28440643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM).
    Armitage JM; Hayward SJ; Wania F
    Environ Sci Technol; 2013; 47(23):13546-54. PubMed ID: 24175752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of polyurethane foam (PUF) disk passive air samplers for quantitative measurement of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs): factors influencing sampling rates.
    Hazrati S; Harrad S
    Chemosphere; 2007 Mar; 67(3):448-55. PubMed ID: 17157353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides.
    Restrepo AR; Hayward SJ; Armitage JM; Wania F
    Environ Sci Process Impacts; 2015 Jul; 17(7):1228-37. PubMed ID: 26083201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the role of the sampler housing in limiting uptake of semivolatile organic compounds in passive air samplers.
    Zhang X; Hoang M; Lei YD; Wania F
    Environ Sci Process Impacts; 2015 Dec; 17(12):2006-12. PubMed ID: 26598925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of depuration compounds in passive air samplers: results from active sampling-supported field deployment, potential uses, and recommendations.
    Moeckel C; Harner T; Nizzetto L; Strandberg B; Lindroth A; Jones KC
    Environ Sci Technol; 2009 May; 43(9):3227-32. PubMed ID: 19534139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.
    Chaemfa C; Wild E; Davison B; Barber JL; Jones KC
    J Environ Monit; 2009 Jun; 11(6):1135-9. PubMed ID: 19513443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.
    Chaemfa C; Barber JL; Gocht T; Harner T; Holoubek I; Klanova J; Jones KC
    Environ Pollut; 2008 Dec; 156(3):1290-7. PubMed ID: 18474408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds.
    Söderström HS; Bergqvist PA
    Environ Sci Technol; 2004 Sep; 38(18):4828-34. PubMed ID: 15487792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the uptake of semivolatile organic compounds by passive air samplers: importance of mass transfer processes within the porous sampling media.
    Zhang X; Wania F
    Environ Sci Technol; 2012 Sep; 46(17):9563-70. PubMed ID: 22845191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of polyoxymethylene passive sampler for assessing air concentrations of PCBs at a confined disposal facility (CDF).
    Odetayo AA; Reible DD; Acevedo-Mackey D; Price C; Thai L
    Environ Pollut; 2020 Oct; 265(Pt A):114720. PubMed ID: 32473506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of performance reference compounds in polyethylene-based passive air samplers.
    Bartkow ME; Jones KC; Kennedy KE; Holling N; Hawker DW; Müller JF
    Environ Pollut; 2006 Nov; 144(2):365-70. PubMed ID: 16631287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.
    Geoghegan TS; Hageman KJ; Hewitt AJ
    Environ Sci Process Impacts; 2014 Mar; 16(3):422-32. PubMed ID: 24365971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment.
    Herkert NJ; Hornbuckle KC
    Environ Sci Process Impacts; 2018 May; 20(5):757-766. PubMed ID: 29611590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers.
    Genualdi S; Lee SC; Shoeib M; Gawor A; Ahrens L; Harner T
    Environ Sci Technol; 2010 Jul; 44(14):5534-9. PubMed ID: 20578700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation and application of accelerated solvent extraction and flash chromatography for quantification of PCBs in tree barks and XAD-2 passive samplers using GC-ECD with dual columns.
    Guéguen F; Stille P; Millet M
    Talanta; 2013 Jul; 111():140-6. PubMed ID: 23622537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.