These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23802682)

  • 1. Precise supramolecular control of selectivity in the Rh-catalyzed hydroformylation of terminal and internal alkenes.
    Dydio P; Detz RJ; Reek JN
    J Am Chem Soc; 2013 Jul; 135(29):10817-28. PubMed ID: 23802682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond classical reactivity patterns: hydroformylation of vinyl and allyl arenes to valuable β- and γ-aldehyde intermediates using supramolecular catalysis.
    Dydio P; Detz RJ; de Bruin B; Reek JN
    J Am Chem Soc; 2014 Jun; 136(23):8418-29. PubMed ID: 24841256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination studies on supramolecular chiral ligands and application in asymmetric hydroformylation.
    Bellini R; Reek JN
    Chemistry; 2012 Jun; 18(23):7091-9. PubMed ID: 22532382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselective Hydroformylation of Internal and Terminal Alkenes via Remote Supramolecular Control.
    Linnebank PR; Ferreira SF; Kluwer AM; Reek JNH
    Chemistry; 2020 Jul; 26(37):8214-8219. PubMed ID: 32198951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of supramolecular bidentate hybrid ligands in asymmetric hydroformylation.
    Bellini R; Reek JN
    Chemistry; 2012 Oct; 18(42):13510-9. PubMed ID: 22968918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-Selective Hydroformylation by a Rhodium Catalyst Confined in a Supramolecular Cage.
    Nurttila SS; Brenner W; Mosquera J; van Vliet KM; Nitschke JR; Reek JNH
    Chemistry; 2019 Jan; 25(2):609-620. PubMed ID: 30351486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis-phosphites and bis-phosphinites based on distally-functionalised calix[4]arenes: coordination chemistry and use in rhodium-catalysed, low-pressure olefin hydroformylation.
    Steyer S; Jeunesse C; Harrowfield J; Matt D
    Dalton Trans; 2005 Apr; (7):1301-9. PubMed ID: 15782268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins.
    Jia X; Wang Z; Xia C; Ding K
    Chemistry; 2012 Nov; 18(48):15288-95. PubMed ID: 23135928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effector enhanced enantioselective hydroformylation.
    Bai ST; Kluwer AM; Reek JNH
    Chem Commun (Camb); 2019 Dec; 55(94):14151-14154. PubMed ID: 31701101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capsule-controlled selectivity of a rhodium hydroformylation catalyst.
    Bocokić V; Kalkan A; Lutz M; Spek AL; Gryko DT; Reek JN
    Nat Commun; 2013; 4():2670. PubMed ID: 24150228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent anchoring of homogeneous catalysts to silica supports with well-defined binding sites.
    Chen R; Bronger RP; Kamer PC; van Leeuwen PW; Reek JN
    J Am Chem Soc; 2004 Nov; 126(44):14557-66. PubMed ID: 15521776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic energy surfaces for real-world systems: an IMOMO CCSD(T):DFT scheme for rhodium-catalyzed hydroformylation with the 6-DPPon ligand.
    Gellrich U; Himmel D; Meuwly M; Breit B
    Chemistry; 2013 Nov; 19(48):16272-81. PubMed ID: 24127405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding as a construction element for bidentate donor ligands in homogeneous catalysis: regioselective hydroformylation of terminal alkenes.
    Breit B; Seiche W
    J Am Chem Soc; 2003 Jun; 125(22):6608-9. PubMed ID: 12769551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into a supramolecular self-assembling catalyst system: evidence for hydrogen bonding during rhodium-catalyzed hydroformylation.
    Gellrich U; Seiche W; Keller M; Breit B
    Angew Chem Int Ed Engl; 2012 Oct; 51(44):11033-8. PubMed ID: 23023718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effector responsive hydroformylation catalysis.
    Bai ST; Sinha V; Kluwer AM; Linnebank PR; Abiri Z; Dydio P; Lutz M; de Bruin B; Reek JNH
    Chem Sci; 2019 Aug; 10(31):7389-7398. PubMed ID: 31489161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium complexes stabilized by phosphine-functionalized phosphonium ionic liquids used as higher alkene hydroformylation catalysts: influence of the phosphonium headgroup on catalytic activity.
    Luska KL; Demmans KZ; Stratton SA; Moores A
    Dalton Trans; 2012 Nov; 41(43):13533-40. PubMed ID: 23023783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of the selectivity for borylation of primary over secondary C-H bonds catalyzed by Cp*-rhodium complexes.
    Wei CS; Jiménez-Hoyos CA; Videa MF; Hartwig JF; Hall MB
    J Am Chem Soc; 2010 Mar; 132(9):3078-91. PubMed ID: 20121104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphabenzenes as monodentate pi-acceptor ligands for rhodium-catalyzed hydroformylation.
    Breit B; Winde R; Mackewitz T; Paciello R; Harms K
    Chemistry; 2001 Jul; 7(14):3106-21. PubMed ID: 11495438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of a confined rhodium catalyst for asymmetric hydroformylation of unfunctionalized internal alkenes.
    Gadzikwa T; Bellini R; Dekker HL; Reek JN
    J Am Chem Soc; 2012 Feb; 134(6):2860-3. PubMed ID: 22280096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Developments in the Scope, Practicality, and Mechanistic Understanding of Enantioselective Hydroformylation.
    Brezny AC; Landis CR
    Acc Chem Res; 2018 Sep; 51(9):2344-2354. PubMed ID: 30118203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.