These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23802856)

  • 1. Biogeochemical controls on hexavalent chromium formation in estuarine sediments.
    Wadhawan AR; Stone AT; Bouwer EJ
    Environ Sci Technol; 2013 Aug; 47(15):8220-8. PubMed ID: 23802856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides.
    Graham AM; Bouwer EJ
    Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of oxygenation on chromium redox reactions with manganese sulfide (MnS(s)).
    Wadhawan AR; Livi KJ; Stone AT; Bouwer EJ
    Environ Sci Technol; 2015 Mar; 49(6):3523-31. PubMed ID: 25688449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium occurrence and speciation in Baltimore harbor sediments and porewater, Baltimore, Maryland, USA.
    Graham AM; Wadhawan AR; Bouwer EJ
    Environ Toxicol Chem; 2009 Mar; 28(3):471-80. PubMed ID: 18937532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey.
    Martello L; Fuchsman P; Sorensen M; Magar V; Wenning RJ
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):337-50. PubMed ID: 17657462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of plants on the removal of hexavalent chromium in wetland sediments.
    Xu S; Jaffé PR
    J Environ Qual; 2006; 35(1):334-41. PubMed ID: 16397109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca.
    Besser JM; Brumbaugh WG; Kemble NE; May TW; Ingersoll CG
    Environ Sci Technol; 2004 Dec; 38(23):6210-6. PubMed ID: 15597873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater.
    Kazakis N; Kantiranis N; Voudouris KS; Mitrakas M; Kaprara E; Pavlou A
    Sci Total Environ; 2015 May; 514():224-38. PubMed ID: 25666283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium speciation in river sediment pore water contaminated by tannery effluent.
    Burbridge DJ; Koch I; Zhang J; Reimer KJ
    Chemosphere; 2012 Oct; 89(7):838-43. PubMed ID: 22658944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the toxicity of chromium in sediments.
    Berry WJ; Boothman WS; Serbst JR; Edwards PA
    Environ Toxicol Chem; 2004 Dec; 23(12):2981-92. PubMed ID: 15648774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium transport in an acidic waste contaminated subsurface medium: the role of reduction.
    Qafoku NP; Evan Dresel P; Ilton E; McKinley JP; Resch CT
    Chemosphere; 2010 Dec; 81(11):1492-500. PubMed ID: 20875666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment.
    Apte AD; Tare V; Bose P
    J Hazard Mater; 2006 Feb; 128(2-3):164-74. PubMed ID: 16297546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry.
    Drinčić A; Zuliani T; Ščančar J; Milačič R
    Sci Total Environ; 2018 Oct; 637-638():1286-1294. PubMed ID: 29801221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium(III) and chromium(VI) in environmental sediment samples.
    Wang LL; Wang JQ; Zheng ZX; Xiao P
    J Hazard Mater; 2010 May; 177(1-3):114-8. PubMed ID: 20034735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides.
    Brose DA; James BR
    Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemical stability of chromium in sediments from the lower Hackensack River, New Jersey.
    Magar VS; Martello L; Southworth B; Fuchsman P; Sorensen M; Wenning RJ
    Sci Total Environ; 2008 May; 394(1):103-11. PubMed ID: 18295301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of plants on the reduction of hexavalent chromium in wetland sediments.
    Zazo JA; Paull JS; Jaffe PR
    Environ Pollut; 2008 Nov; 156(1):29-35. PubMed ID: 18299165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitating role of biogenetic schwertmannite in the reduction of Cr(VI) by sulfide and its mechanism.
    Zhou P; Li Y; Shen Y; Lan Y; Zhou L
    J Hazard Mater; 2012 Oct; 237-238():194-8. PubMed ID: 22954599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.