BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 23802871)

  • 21. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation.
    Terzis D; Laloui L
    Sci Rep; 2018 Jan; 8(1):1416. PubMed ID: 29362386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facultative and anaerobic consortia of haloalkaliphilic ureolytic micro-organisms capable of precipitating calcium carbonate.
    Skorupa DJ; Akyel A; Fields MW; Gerlach R
    J Appl Microbiol; 2019 Nov; 127(5):1479-1489. PubMed ID: 31301204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral induced polarization signatures of hydroxide adsorption and mineral precipitation in porous media.
    Zhang C; Slater L; Redden G; Fujita Y; Johnson T; Fox D
    Environ Sci Technol; 2012 Apr; 46(8):4357-64. PubMed ID: 22420512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation.
    Song M; Ju T; Meng Y; Han S; Lin L; Jiang J
    Chemosphere; 2022 Mar; 290():133229. PubMed ID: 34896177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes.
    Aoki M; Noma T; Yonemitsu H; Araki N; Yamaguchi T; Hayashi K
    Pol J Microbiol; 2018 Mar; 67(1):59-65. PubMed ID: 30015425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system.
    Lauchnor EG; Schultz LN; Bugni S; Mitchell AC; Cunningham AB; Gerlach R
    Environ Sci Technol; 2013 Feb; 47(3):1557-64. PubMed ID: 23282003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO
    Okyay TO; Nguyen HN; Castro SL; Rodrigues DF
    Sci Total Environ; 2016 Dec; 572():671-680. PubMed ID: 27524723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation.
    Zhu X; Wang J; De Belie N; Boon N
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8825-8838. PubMed ID: 31637492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms.
    Gomez MG; Graddy CMR; DeJong JT; Nelson DC
    Sci Rep; 2019 Aug; 9(1):11517. PubMed ID: 31395919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial healing of cracks in concrete: a review.
    Joshi S; Goyal S; Mukherjee A; Reddy MS
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1511-1525. PubMed ID: 28900729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical review on microbial carbonate precipitation via denitrification process in building materials.
    Jain S; Fang C; Achal V
    Bioengineered; 2021 Dec; 12(1):7529-7551. PubMed ID: 34652267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic optimisation of bacteria-induced calcite precipitation in Bacillus subtilis.
    Hoffmann TD; Paine K; Gebhard S
    Microb Cell Fact; 2021 Nov; 20(1):214. PubMed ID: 34794448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of microbially induced calcium carbonate precipitation (MICP) process in concrete self-healing and environmental restoration to facilitate carbon neutrality: a critical review.
    Chang J; Yang D; Lu C; Shu Z; Deng S; Tan L; Wen S; Huang K; Duan P
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38083-38098. PubMed ID: 38806987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains.
    Harnpicharnchai P; Mayteeworakoon S; Kitikhun S; Chunhametha S; Likhitrattanapisal S; Eurwilaichitr L; Ingsriswang S
    Lett Appl Microbiol; 2022 Oct; 75(4):888-898. PubMed ID: 35611563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review.
    Sarayu K; Iyer NR; Murthy AR
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2308-23. PubMed ID: 24395694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization.
    Rajasekar A; Zhao C; Wu S; Murava RT; Wilkinson S
    World J Microbiol Biotechnol; 2024 Jun; 40(7):229. PubMed ID: 38825655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomineralization of hypersaline produced water using microbially induced calcite precipitation.
    Hu L; Wang H; Xu P; Zhang Y
    Water Res; 2021 Feb; 190():116753. PubMed ID: 33360619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil.
    Comadran-Casas C; Schaschke CJ; Akunna JC; Jorat ME
    J Environ Manage; 2022 Feb; 304():114307. PubMed ID: 34942547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing hydraulic conductivity of porous media using CaCO₃ precipitation induced by Sporosarcina pasteurii.
    Eryürük K; Yang S; Suzuki D; Sakaguchi I; Akatsuka T; Tsuchiya T; Katayama A
    J Biosci Bioeng; 2015 Mar; 119(3):331-6. PubMed ID: 25239069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation.
    Chen YQ; Wang SQ; Tong XY; Kang X
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3555-3569. PubMed ID: 35501489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.