BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23803312)

  • 1. Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion.
    Lin L; Chen M; Yang C; He L
    J Phys Condens Matter; 2013 Jul; 25(29):295501. PubMed ID: 23803312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first and second static electronic hyperpolarizabilities of zigzag boron nitride nanotubes. An ab initio approach through the coupled perturbed Kohn-Sham scheme.
    Orlando R; Bast R; Ruud K; Ekström U; Ferrabone M; Kirtman B; Dovesi R
    J Phys Chem A; 2011 Nov; 115(45):12631-7. PubMed ID: 21699207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials.
    Noel Y; D'arco P; Demichelis R; Zicovich-Wilson CM; Dovesi R
    J Comput Chem; 2010 Mar; 31(4):855-62. PubMed ID: 19603502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DGDFT: A massively parallel method for large scale density functional theory calculations.
    Hu W; Lin L; Yang C
    J Chem Phys; 2015 Sep; 143(12):124110. PubMed ID: 26428999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density of states of helically symmetric boron carbon nitride nanotubes.
    Carvalho AC; Bezerra CG; Lawlor JA; Ferreira MS
    J Phys Condens Matter; 2014 Jan; 26(1):015303. PubMed ID: 24275247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory.
    Jia W; Lin L
    J Chem Phys; 2017 Oct; 147(14):144107. PubMed ID: 29031270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.
    Hu W; Lin L; Yang C
    Phys Chem Chem Phys; 2015 Dec; 17(47):31397-404. PubMed ID: 25698178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores.
    Zhou Z; Zhao J; Chen Z; Gao X; Lu JP; von Ragué Schleyer P; Yang CK
    J Phys Chem B; 2006 Feb; 110(6):2529-32. PubMed ID: 16471851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, optical properties and defects in nitride (III-V) nanoscale cage clusters.
    Shevlin SA; Guo ZX; van Dam HJ; Sherwood P; A Catlow CR; Sokol AA; Woodley SM
    Phys Chem Chem Phys; 2008 Apr; 10(14):1944-59. PubMed ID: 18368187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum study of boron nitride nanotubes functionalized with anticancer molecules.
    Duverger E; Gharbi T; Delabrousse E; Picaud F
    Phys Chem Chem Phys; 2014 Sep; 16(34):18425-32. PubMed ID: 25070038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.
    Hu W; Lin L; Yang C; Yang J
    J Chem Phys; 2014 Dec; 141(21):214704. PubMed ID: 25481158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.
    Zhao JX; Ding YH
    Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Lagrangian free energy molecular dynamics.
    Niklasson AM; Steneteg P; Bock N
    J Chem Phys; 2011 Oct; 135(16):164111. PubMed ID: 22047232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion interactions in density-functional theory: an adiabatic-connection analysis.
    Strømsheim MD; Kumar N; Coriani S; Sagvolden E; Teale AM; Helgaker T
    J Chem Phys; 2011 Nov; 135(19):194109. PubMed ID: 22112068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.
    Rodríguez JI; Ayers PW; Götz AW; Castillo-Alvarado FL
    J Chem Phys; 2009 Jul; 131(2):021101. PubMed ID: 19603962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient density-functional-theory force evaluation for large molecular systems.
    Reine S; Krapp A; Iozzi MF; Bakken V; Helgaker T; Pawłowski F; Sałek P
    J Chem Phys; 2010 Jul; 133(4):044102. PubMed ID: 20687628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.
    Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS.
    Luo Z; Qin X; Wan L; Hu W; Yang J
    Front Chem; 2020; 8():589910. PubMed ID: 33324611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.